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Abstract
Memory access latency is the primary performance bottle-
neck in modern computer systems. Prefetching data before
it is needed by a processing core allows substantial perfor-
mance gains by overlapping significant portions of memory
latency with useful work. Prior work has investigated this
technique and measured potential performance gains in a va-
riety of scenarios. However, its use in speeding up Hardware
Transactional Memory (HTM) has remained hitherto unex-
plored. In several HTM designs transactions invalidate spec-
ulatively updated cache lines when they abort. Such cache
lines tend to have high locality and are likely to be accessed
again when the transaction re-executes.

Coarse grained transactions that update relatively large
amounts of data are particularly susceptible to performance
degradation even under moderate contention. However, such
transactions show strong locality of reference, especially
when contention is high. Prefetching cache lines with high
locality can, therefore, improve overall concurrency by
speeding up transactions and, thereby, narrowing the win-
dow of time in which such transactions persist and can cause
contention. Such transactions are important since they are
likely to form a common TM use-case. We note that tra-
ditional prefetch techniques may not be able to track such
lines adequately or issue prefetches quickly enough. This pa-
per investigates the use of prefetching in HTMs, proposing
a simple design to identify and request prefetch candidates,
and measures potential performance gains to be had for sev-
eral representative TM workloads.
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1. Introduction
The ever-widening disparity between the speed at which a
processor core can process data and the speed at which the
memory hierarchy can supply it has led to a myriad of tech-
niques that aim at overlapping data access latency with some
form of useful work. Prefetching is one such technique,
where by predicting memory references likely to occur in
the near future, data can be fetched into structures close to
the core before its needed. Various prediction techniques

have been employed, targeting frequently encountered pat-
terns in memory references. However, Hardware Transac-
tional Memory (HTM) [11] presents a scenario where a new
form of prefetching may be invoked that allows more effec-
tive latency hiding than standard techniques.

Several implementations of HTM [5, 7, 15, 17, 22] use
first-level caches to isolate speculative state, preserving a
consistent state by pushing clean (old) cache lines to second-
level caches and beyond. Transactions execute speculatively
and any data races detected by the HTM system are typically
resolved by forcing one or more of the conflicting transac-
tions to abort. When a transaction aborts speculative state
must be discarded and the transaction must be re-executed.
To do so, all speculatively modified lines in the first-level
cache are invalidated. Subsequent references to such lines
during re-execution will miss in the first-level cache and
retrieve a clean version of the line from deeper levels of
the memory hierarchy. Thus, data transfer latencies delay
transactional execution. In scenarios with moderate to high
contention this can result in extended transaction execution
times resulting in application slow-down and a higher prob-
ability of contention. We observe that while a technique like
runahead execution [6, 14] could be advantageous here, the
hardware requirements for runahead execution and transac-
tional execution are similar (support for checkpointing and
dependency tracking) and thus would need to be duplicated
in hardware.

In this study we investigate potential gains to be had when
lines in the write-set – the set of speculatively updated cache
lines – of a transaction are prefetched when it begins exe-
cution. These lines are highly likely to be referenced again
when an aborted transaction re-executes. Moreover, in Sec-
tion 2 we show that this locality of reference is not limited
to re-executions of a particular transaction invocation and
persists even when a new invocation of the transaction oc-
curs. These observations have motivated the design of hard-
ware prefetching mechanisms described in this paper. These
mechanisms are able to track important write-set lines and
are brought into play upon aborts and new transaction starts
to prefetch lines that would be required by the transaction



during its execution. This design is intended to act as a proof
of concept and the authors plan to develop it further.

The benefits from prefetching write-set lines are expected
to be most noticeable in lazy versioning systems like TCC
[5, 7]. This is so because, unlike eager versioning designs,
they do not invoke an abort handler to restore clean val-
ues when speculation fails, and rely upon deeper levels of
the memory hierarchy to provide consistent data. However,
eager versioning designs like LogTM[23] will benefit from
prefetches that are initiated when a new instance of a trans-
action first begins. In this case a part of the write-set may not
be present in the cache when the transaction starts execution,
particularly when the contention is high. This effect not only
improves execution times but also narrows the window of
contention improving concurrency overall.

The rest of this paper is organized as follows. Section 2
shows strong evidence of the locality of reference that ex-
ists between multiple invocations of a given transaction for a
variety of transactional workloads. This also motivates the
hardware structures which are described in detail in Sec-
tion 3. Section 3 also describes the operation of the prefetch
mechanism. Section 4 presents potential performance gains
that can be achieved when such prefetching is enabled. We
evaluate an ideal prefetcher and a real prefetcher based on
the design presented in Section 3. Section 5 puts our contri-
butions in perpective of prior work done in prefetching and
HTM.

2. Motivation
To make a case for prefetching in transactions we have in-
vestigated the behavior of several workloads in the STAMP
benchmark suite [4]. The goal of this analysis was to quan-
tify the locality of reference that exists in write-sets across
different invocations of the same atomic block or transac-
tion. We recorded all stores issued by each transaction from
one thread of each application, tracking the number of trans-
action invocations that reference each distinct memory loca-
tion. We then ranked accessed locations on the basis of fre-
quency of such references for all invocations of each trans-
action.

Figure 1 presents several plots (one for each workload in-
cluded in the study) that show the number of distinct cache-
line addresses that can cover a certain fraction of the total
number of memory references generated by all invocations
of a certain transaction over the duration of the application.
For each plot the x-axis is in logarithmic scale and shows the
number of distinct addresses, N . The y-axis plots cumulative
reference count, C, (for the N most frequently referenced
addresses) normalized to the total number of references is-
sued. In other words, if we can track and prefetch a certain
number, N , of the most frequently referenced addresses then
we can potentially satisfy a fraction, C, of stores in transac-
tions. Moreover, it can be inferred from the read-modify-
write behavior of common transactions that these prefetches

would also satisfy a significant portion of loads issued by the
transaction.

Some transactions have almost no locality of reference,
like Tx2 from kernel 1 in SSCA2, a workload with little con-
tention. The linear rise (note that the x-axis is logarithmic) in
cumulative reference count is indicative of this fact. A sim-
ilar case occurs in Labyrinth, where concurrency is limited
but the nature of work results in the different invocations of
the same transaction updating very different locations. How-
ever, for applications like Intruder, Genome, Kmeans and
Yada one notices saturation or very low growth in cumu-
lative reference count beyond 16 or 20 addresses, indicating
strong locality of reference.

The optimistic nature of TM usually provides good per-
formance when workloads have little contention. However,
when contention is high overheads of managing and restor-
ing speculative state grow and increase application execu-
tion times. Therefore, to improve HTM design one must aim
at minimizing overheads when running applications with
moderate to high contention. Besides direct improvements
in transaction execution times, prefetching data can poten-
tially improve overall concurrency by narrowing the window
of contention for transactions. As single-thread performance
growth stagnates, running applications with inherently lim-
ited parallelism in a multithreaded fashion will be a natural
recourse to extract maximum benefit from core count scal-
ing. For such applications in our study (Genome, Intruder,
KMeans, Yada) we see that significant locality of reference
exists. If we track the 16 most frequently accessed addresses
for each transaction we can typically cover more than 60%
of the references issued.

3. Design
We subdivide the design into three components – the first
which infers locality, the second which manages prefetches
and the third which trims prefetch lists. The subsections be-
low describe the structure and behavior of each component.

3.1 Inferring locality
To decide which cache line addresses are most suitable for
prefetching one must first get a measure of the associated
locality. The key problem that arises when one attempts to
track locality traits of arbitrary memory locations is that
of maintaining a history of memory references until there
is enough to infer useful behavioural characteristics. While
the history is being recorded there might not be any notion
of relative importance of different addresses, resulting in
seemingly very large storage requirements or extremely long
delays in making inferences. A trade-off must be made that
keeps the design simple yet responsive. We choose to do
so by employing two bloom filter signatures in a ping-pong
fashion. Using a 4-step iterative refinement mechanism we
learn high-locality cache line addresses one transaction at a
time.
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Figure 1: Locality of reference across transaction invocations.



Figure 2 shows the key elements of the proposed mecha-
nism. Two bloom filter signatures, BFx and BFy, are used to
track addresses of speculatively updated cache lines. To keep
things simple, we infer locality one transaction at a time. The
design utilizes four invocations (not re-executions) of each
transaction for locality inference. The first invocation results
in entry into locality inference mode. Cache line addresses
targeted by stores in the transaction are inserted into BFx.
During the second invocation all lines targeted by stores are
checked for presence in BFx. If they are found in BFx the
addresses are inserted into BFy. The third and fourth invo-
cations are used to build prefetch candidate lists. If a cache
line address targeted by a store in the third or the fourth in-
vocation is found in BFy we add the address to the prefetch
candidate list. The commit of the fourth invocation ends the
locality inference phase for the transaction, releasing these
resources for use by other transactions. Locality inference is
not initiated for transactions as long as they have prefetch
resources allocated to them. Training is aborted if two invo-
cations of another transaction are seen and a watchdog timer
has been triggered. This prevents seldom executed transac-
tions from permanently blocking access to locality inference
structures.

3.2 Managing prefetches
Prefetch candidates produced through locality inference are
stored in one of several prefetch lists. For the purposes of this
study we have 8 lists, 8 entries each. Thus we can support
8 distinct transactions or atomic blocks. If there are fewer
transactions which require more than 8 prefetch entries, two
or more lists can be chained together. This is managed by the
Transactional Prefetch List Map (TPLM). This is a structure
with 8 entries. Each entry contains a TXID (transaction
identifier) field and an 8-bit map with high bits indicating
prefetch lists allocated to the transaction. When more than
8 transactions exist or no prefetch lists are available we
employ an LRU scheme to release resources for the least
recently invoked transaction. Prefetches are issued when a
transaction begins and has prefetch lists associated with it.

Each entry in the prefetch list contains the cache line ad-
dress, the PE (prefetch enable) bit, a PU (Prefetch Useful) bit
and a 2-bit counter. The PE bit is set when the corresponding
line is invalidated or evicted from the cache or when a trans-
actional store updates it. Transactional commits reset all PE
bits. PE bits are also reset when a cache line fill occurs and
a transactional update to the line has not yet been issued. All
PU bits are reset when a transaction begins. A PU bit is set
when a transactional store targets the corresponding cache
line, indicating that the address still retains locality.

3.3 Trimming prefetch lists
The two bit counter for each prefetch candidate is set to
4 when the entry is first created. On transaction commits
the counter is decremented for all entries in the prefetch
list for which PU bit is not set. If the count reaches 0 the

Cores 32 in-order 2GHz Alpha cores, 1 IPC
L1 Caches 32KB 4-way, 64B lines, 1-cycle hit
L2 Cache 1MB 8-way, 64B lines, 10-cycle hit
Memory 4GB, 350-cycle latency
Interconnect 2D mesh, 10 cycles per hop
Directory full-bit vector sharers list,

10-cycle hit directory cache

Table 1: Simulation parameters.

line is not prefetched any more. If all entries for a certain
transaction have counts set to 0 the resources (prefetch lists
and TPLM) are released for use by other transactions. The
next invocation of such a transaction will be eligible for
locality inference, when prefetch lists will be rebuilt.

4. Evaluation
In this section we evaluate the performance of transactional
prefetching. We use as baseline Scalable-TCC, a state-of-
the-art lazy HTM system. We first describe the simulation
environment that we use, then we present our preliminary
results.

4.1 Simulation Environment
For the evaluation we use M5 [2], an Alpha 21264 full-
system simulator. We modify M5 to faithfully model the
Scalable-TCC proposal, a directory-based distributed shared
memory system, and the interconnection network between
the nodes. Scalable-TCC has an always-in-transaction ap-
proach and employs lazy conflict detection and resolution
at commit time, transactional updates are kept in private
buffers (caches) to maintain isolation. Table 1 summarizes
the system parameters that we use, with two levels of pri-
vate caches and a 2D mesh network to connect the different
nodes, resembling the original Scalable-TCC proposal. Our
proposed transactional prefetching scheme is implemented
on top of the baseline HTM. This detailed simulation model
, denoted as TP (Transactional Prefetching), employs perfect
bloom filters (no false positives). In addition, we also simu-
late an idealized model that at the beginning of a transaction
prefetches all the lines that have been speculatively written
by that transaction in the past. These prefetches are consid-
ered to be serviced instantaneously. We name this model PA
(Prefetch All).

We use the STAMP benchmark suite [4] to evaluate our
proposal. Table 2 lists the evaluated workloads and input pa-
rameters. We exclude the application Bayes from our eval-
uation, because this application has non-deterministic ex-
iting conditions leading to severe load imbalance between
threads, which makes comparison between different systems
inconclusive.



Figure 2: Transactional Prefetch: Key components

Benchmark Input parameters
Genome -g512 -s32 -n32768
Intruder -a10 -l32 -n8192 -s1
KMeans -m15 -n15 -t0.05 -i random16384-d24-c16
Labyrinth -i random-x96-y96-z3-n128.txt
SSCA2 -s13 -i1.0 -u1.0 -l3 -p3
Vacation -n4 -q60 -u90 -r1048576 -t4096
Yada -a20 -i 633.2

Table 2: Evaluated STAMP benchmarks and input parame-
ters.

4.2 Performance Results
Figure 3 shows the execution time breakdown for the HTM
systems that we evaluate, namely Scalable-TCC (S), Trans-
actional Prefetching (TP), and Prefetch All (PA). The results
in Figure 3 are normalized to Scalable-TCC 32-threaded ex-
ecutions, and they are split into six parts, namely Barrier,
Commit, Useful, StallCache, Wasted, and WastedCache. For
committed transactions, we dene Useful time as one cycle
per instruction plus the number of memory accesses per in-
struction multiplied by the L1D hit latency, and we dene
StallCache as the time spent waiting for an L1D cache miss
to be served. Analogously, for aborted transactions we define
Wasted and WastedCache.

Intruder shows remarkable improvement when prefetch-
ing is enabled (a speedup of more than 2x). It is a highly
contended application exhibiting significant locality across
various transaction invocations. In this scenario prefetching
data results in substantial shortening of transaction lifetimes.
The components, StallCache and WastedCache, show major
reductions, as can be seen in Figure 3 . We highlight this ap-
plication because in our opinion it is an important workload

Benchmark %Useful %Trimmed %Cache
improvement

Genome 92.43 1.87 12.63
Intruder 97.39 0.02 28.67
KMeans 43.59 13.85 13.59
Labyrinth 100.00 0.00 0.00
SSCA2 – – 0.00
Vacation 91.38 2.50 2.85
Yada 92.10 1.55 6.02
Mean 86.15 3.30 9.11

Table 3: Statistics of Transactional Prefetching for evaluated
workloads.

Legend: %Useful — Percentage of useful prefetches compared to issued
prefetches; %Trimmed — Percentage of trimmed entries compared to
issued prefetches; %Cache improvement — Percentage improvement of
total cache service time compared to Scalable-TCC.

that is representative of applications with limited concur-
rency. Such multithreaded applications will gain importance
as parallelization is expected to become the only source of
performance scaling.

Genome shows moderate contention and a significant
amount of locality for most transactions (see Figure 1). It
shows two distinct phases during execution – a short early
high contention phase followed by a longer phase with low
to moderate contention. The benefits of prefetching accrue
in the first phase, yielding an 8% improvement over the
baseline.

Yada is another application with moderate contention (see
Figure 1). Prefetching lines improves performance, though
not by much (5%). This is because of the large number of
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accesses made by an average transaction, some of which are
not prefetched.

KMeans exhibits short phases with high locality. This is
evident from the number of trimmed and useful prefetches
Table 3. This shows that the prefetching mechanism adapts
to changing locality characteristics. Improvements of 6%
can be noticed in KMeans. It should be noted here that
Kmeans spends only a small fraction of time executing user-
defined transactions.

SSCA2 is a highly concurrent application with little con-
tention and almost no locality across transactions(see Figure
1). Hence, prefetching is not expected to play a role here, and
as shown in Table 3 our proposed prefetch mechanism does
not issue a single prefetch for this application. Though Va-
cation has large transactions, there is very little contention
and transactions are read dominant. Thus, even though is-
sued prefetches are useful, the benefits are small. Though
Labyrinth repeatedly accesses a large set of addresses, it ex-
ecutes a very small number of transactions (less than ten
instances of each defined transaction), leading to negligible
performance gains for TP. Note that with PA, labyrinth per-
forms worse than the other proposals due to load imbalance,

that is because due to prefetching some threads manage to
get ahead of execution finishing faster than the other threads.

Figure 4 shows the scalability chart for the evaluated
workloads using 32 threads on 32 cores. Intruder has a re-
markable boost in scalability reaching 17.7× with TP, a
promising result for an application that is known to have dif-
ficulties to scale. Noticeable improvements can be also seen
in Genome, KMeans, Vacation and Yada, while applications
like SSCA2 and Labyrinth remain flat due to their transac-
tional characteristics.

Overall, as shown in Table 3 our transactional prefetch-
ing mechanism successfully infers locality from the evalu-
ated workloads, achieving more than 90% utilization of is-
sued prefetches for all applications except KMeans, where
locality is high, but appears in short phases. Moreover, our
design is able to detect scenarios where prefetching is not
useful, for example in applications like SSCA2, and does
not issue useless prefetches for such scenarios.

5. Related Work
Although the first proposal by Herlihy and Moss [9] ap-
peared in 1993, research in TM gained momentum with the



introduction of multicore architectures. Two early HTM pro-
posals, TCC [8] and LogTM [23], explore two very different
points in the HTM design space. TCC defines a lazy con-
flict resolution design where transactions execute specula-
tively until one tries to commit its results and causes the re-
execution of any concurrent conflicting transaction. LogTM
describes an eager conflict resolution design that employs
coherence to detect conflicts as soon as they occur and are
resolved by asking the requester to retry (with a way to break
occasional deadlocks through software intervention). Since
then a lot of work has been done targeting a host of differ-
ent issues that arise when transactional applications run on
multicores. Bobba et al. [3] categorized pathologies that can
arise in fixed policy HTM designs and degrade scalability
and performance. The paper pointed out performance bot-
tlenecks that can arise out of limited commit bandwidth in
lazy conflict resolution designs and overheads due to exces-
sive aborts in eager resolution designs. Several designs since
then have targeted improved scalability in lazy conflict res-
olution systems through various means – making write-set
commits more fine-grained [5, 18, 19] and ensuring conflict-
ing transactions do not interfere with an on-going commit
[17, 22].

Others have attempted to reduce abort overheads in both
eager and lazy conflict resolution systems – by allowing ea-
ger systems to utilize deeper levels of the memory hierarchy
to buffer old values [12] and by having caches with special
SRAM cells that can store two versions of the same line si-
multaneously [1]. Yet others have attempted to incorporate
the best of both eager and lazy policies in one design – at
the granularity of application phases [15], at the granularity
of transactions [13] , and at the granularity of cache lines
[21]. There exist studies that have attempted to insulate the
coherent cache hierarchy from adverse effects of repeated
aborts [16]. These varied attempts at reducing overheads in-
volved in shared data accesses by cooperating threads have
motivated the design effort in this work.

This paper, however, presents a study and design that
is largely orthogonal to the various design approaches dis-
cussed above. It uses the fact that transactions show locality
of reference which can be utilized to improve the speed at
which they can complete updates to shared data, thereby im-
proving speed and reducing contention. Several prior stud-
ies have developed ideas regarding cache line prefetching
[10, 20] and investigated various prefetching schemes based
on detecting cache-miss patterns in non-transactional work-
loads. This paper, unlike prior work, describes a scheme that
does not rely upon the existence of a simple pattern (like a
stride) in the memory reference stream. It can learn arbitrary
sets of cache line addresses as long as they show locality of
reference across multiple invocations of the same section of
code.

6. Conclusion and Future Work
This paper highlights the importance of prefetching data in
the new context of hardware transactional memory. Since
transactions are used to annotate parts of multithreaded al-
gorithms where concurrent tasks share information, it is im-
portant that they run as fast as possible to improve over-
all scalability of the application. Moreover transactions are
clearly demarcated sections of code and thus can be tar-
geted by techniques, such as the one proposed in this pa-
per, that attempt to utilize any locality of reference that
may exist within such codes. Our technique, using rela-
tively modest hardware support shows improvements for
most transactional workloads we have analyzed, with sub-
stantial gains of upto 2x under high contention (for intruder).
This paper includes early results from our on-going investi-
gation into the use of cache line prefetching for speeding
up transactions. We plan to develop the design further to
achieve faster response to changing workload characteris-
tics, quicker assessment of locality and more efficient sup-
port for numerous large transactions. We also wish to study
interactions that occur when this technique is combined with
other forms of prefetching and use the insights so acquired
to develop synergistic techniques that further improve de-
sign cost and performance and speed up both transactional
and non-transactional code.
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