
Transactions are Back—but How Different They Are?
Relating STM and Databases Consistency Conditions

(Preliminary Version)

Hagit Attiya
Technion

hagit@cs.technion.ac.il

Sandeep Hans
Technion

sandeep@cs.technion.ac.il

Abstract
We describe several database consistency conditions
that restrict ongoing transactions (which might later
be aborted), and relate them to known consistency
conditions for transactional memory. In particular, we
show that rigorousness is strictly stronger than opacity,
but strictness is incomparable to opacity. The same
relationships also hold for virtual world consistency.
We also show that all non-eager STMs are strict.

1. Introduction
The transactional approach to programming concur-
rent applications is based on designating parts of the
program as transactions. A transaction is a sequence of
operations (typically, reads and writes) which are guar-
anteed to appear to execute atomically [9].

A software implementation of transactional memory (in
short, STM) executes transactions in an optimistic man-
ner, proceeding to read data and perform calculations
based on it. The STM may need to abort transactions,
when the consistency of the data could be compro-
mised.

Transactions are ordinary pieces of code, and their
execution is not expected to be “sandboxed”, namely,
they execute in an unsupervised manner. Therefore, an
ongoing transaction must also see a consistent view of
the data. Hence, there is a need to specify consistency
conditions that also apply to the views of ongoing
transactions, even if they may later abort.

This led to the introduction of several consistency
conditions for transactional memory. All these con-
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ditions require committed transactions to be serial-
izable [12], preserving the real-time order on non-
overlapping transactions; they differ in the way they
ensure that views of ongoing transactions that later
abort, are consistent with a sequential history. The most
widely-known STM consistency condition is opacity [6];
other consistency conditions include virtual worlds con-
sistency (VWC) [11], and transactional memory specifica-
tion (TMS) [4].

It has been argued that transactional memory im-
poses more stringent demands on transactions than
database systems [5]. The claim is that, since the execu-
tion of database transactions is governed by a concur-
rency control monitor, database consistency conditions
are less concerned with the views of aborted transac-
tions.

However, the database literature includes several
consistency conditions that enforce conditions on ongo-
ing, and even aborted, transactions. The most notable
ones are rigorousness [3], strictness [2], and recoverabil-
ity [8]. These conditions are known to be comparable to
one another, with rigorousness being the strongest con-
dition and recoverability the weakest (Figure 1, based
on [14]).

The transactional memory approach is inspired by
database research [9], and it is interesting to understand
DB conditions and relate them to STM conditions. This
is important not only for historical reasons, but also in
order to obtain better understanding of consistency of
transactional memories, and hopefully, come up with
cleaner and more accepted conditions.

This paper takes a step in this direction, and proves
that rigorousness is strictly stronger than opacity. Sur-
prisingly, the relationship between opacity and strict-
ness is not straightforward, even though both are
weaker than rigorousness. There are histories that are
opaque but not strict and histories that are strict but not
opaque. VWC follows the same relations as opacity.
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We also show that STMs that are not eager, i.e., expose
the values they write only when they are sure to be
committed, satisfy strictness.

Organization of the paper: After presenting the basic
model (Section 2), we describe the database consistency
conditions in Section 3. STM conditions, in particular,
opacity, are presented in Section 4, and the relationships
between database and STM conditions is explored in
Section 5. Non-eager STMs are discussed in Section 6.
We conclude, with a summary of the results and related
future research, in Section 7.

2. Basic Model
We outline the basic definitions, following [2, 14].

Let Γ = {T1, . . . ,TN} be a set of transactions, where
each transaction Ti ∈ Γ has the form Ti = (opi, <i), with
opi denoting the set of operations of Ti and <i denoting
their total ordering, 1 ≤ i ≤ n.

We consider only read and write operations, letting
ri(x) and wi(x) denote, respectively, read and write
operations on data item x by Ti. Two operations by
different transactions conflict if they are on the same
data item and at least one of them is a write.

Definition 1. A history for a set of transactions Γ is a pair
s = (op(s), <s) such that:

1.
⋃n

i=1 <i ⊆<s, the partial order of s extends all transaction
orders;

2. op(s) ⊆
⋃n

i=1 opi ∪
⋃n

i=1{ai, ci} and
⋃n

i=1 opi ⊆ op(s), i.e.,
s consists of the union of the operations from the given
transactions plus a termination operation, which is either
ci (commit) or ai (abort), for each Ti ∈ Γ;

3. (∀i, 1 ≤ i ≤ n) ci ∈ op(s) ↔ ai < op(s), i.e., for each
transaction, there is either a commit or an abort in s, but
not both;

4. (∀i, 1 ≤ i ≤ n) (∀oi ∈ opi) oi <s ai or oi <s ci, i.e., a
commit or abort operation always appears as the last step
of a transaction;

5. every pair of conflicting operations oi, o j ∈ op(s) is ordered
in s, i.e., either oi <s o j or o j <s oi.

A schedule is a prefix of a history.
The set of transactions occurring partially or com-

pletely in a schedule s is

trans(s) B {Ti | s contains steps from Ti} .

Definition 2. The committed projection of a history s,
denoted C(s), is the history obtained by deleting all operations
that do not belong to transactions committed in s.

Definition 3. Two histories s and s′ are (conflict) equiva-
lent if

1. they are defined over the same set of transactions and have
the same operations.

Figure 1. Database consistency conditions

2. they order conflicting operations of non-aborted trans-
actions in the same way; that is, for any conflicting op-
erations oi and o j belonging to transactions Ti and T j
(respectively), where ai, a j < s, if oi <s o j then oi <s′ o j.

Definition 4. A history s is (conflict) serializable if its
committed projection is (conflict) equivalent to a serial1

history.

3. Database Consistency Conditions
We will discuss four DB consistency conditions, their
shortcomings and the need for stricter conditions; our
description follows [2, 14]. In the rest of the paper, we
always assume that the histories are also serializable.
Figure 1 summarizes the relation between these condi-
tions (cf. [14]).

3.1 Recoverability

Consider two transactions T1 and T2 as shown in Figure
2. T1 writes a value 1 to data item x. T2 reads x and
commits. Then, T1 aborts. T2 has read a value written
by an aborted transaction and has committed.

Figure 2. Dirty read problem

This problem is known as the dirty read problem, and
the first consistency condition that we will describe,
recoverability, takes care of it.

Recoverability states that all the transactions that
have written the shared values read by transaction T,
should commit before T.
1 Roughly speaking, a history s is serial if all operations of one
transaction precede (in <s) all operations of another transaction.
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A transaction Ti reads from transaction T j if Ti reads
a value written by T j.

Definition 5 (Hadzilacos [8]). A schedule s is recov-
erable if the following holds for all transactions Ti,T j ∈

trans(s), i , j: if Ti reads from T j in s and ci ∈ op(s), then
c j <s ci.

Consider the scenario in Figure 3. Transaction T2
reads the value of x from T1. By recoverability, T2 should
commit only if T1 has committed.

Figure 3. Recoverability

3.2 Avoiding Cascading Aborts

Consider the scenario in Figure 4. T2 reads the value
written by T1 and T1 aborts after that. When T2 tries to
commit, it will have to abort because of T1.

Figure 4. Cascading abort problem

This is known as the cascading aborts problem. If a
transaction aborts, then all the subsequent transactions
reading the values written by this transaction will have
to abort. Recoverability states that if a transaction, say
T1, writes a value read by another transaction T2, then
T2 can only commit after T1 is committed or T1 should
have committed before T2 is committed. In order to
avoid cascading aborts, T1 should have committed
before T2 reads the value, i.e., a transaction can read
only from committed transactions, as stated in the next
definition.

Definition 6 (Bernstein et al. [2]). A schedule s avoids
cascading aborts (ACA) if the following holds for all
transactions Ti,T j ∈ trans(s), i , j: if Ti reads the value of
x from T j in s in the operation ri, then c j <s ri(x).

In Figure 5, T2 reads the value written by T1, which
is committed.

3.3 Strictness

There is a problem with the ACA condition, which
applies only for databases or for STMs with in-place
updates. If a transaction aborts, all its effects are rolled
back to the state before the transaction began. Consider

Figure 5. Avoiding cascading aborts

the scenario depicted in Figure 6. Let the initial value
of data item x be 1. T1 writes 2 to x, then T2 writes 3 and
commits. Then T1 aborts and the system is rolled-back
to the state where it was before T1 started. The write by
T2, though committed, is lost.

Figure 6. Problem with ACA

Recoverability and ACA are based on causality,
where a transaction is concerned only with transactions
writing values that it reads. In strictness, however, a
transaction is also concerned with transactions that
write to a data item it reads. A transaction writing
to a data item should complete (commit or abort)
before another transaction reads from the data item
or overwrites it.

Definition 7 (Bernstein et al. [2]). A schedule s is strict
if the following holds for all transactions Ti ∈ trans(s) and
for all oi(x) ∈ op(Ti), o ∈ {r,w}: if w j(x) <s oi(x), i , j, then
a j <s oi(x) ∨ c j <s oi(x).

Figure 7. Strictness

3.4 Rigorousness

In strictness, if a transaction reads from a data item,
it can read only if all the transactions that write to
this data item have committed or aborted. Rigorousness
states that in addition to strictness, a transaction can
write to a data item only if all the transactions reading
it have committed or aborted.

Definition 8 (Breitbart et al.[3]). A schedule s is rigorous
if it is strict and additionally satisfies the following condition:
for all transactions Ti,T j ∈ trans(s) if r j(x) <s wi(x), i , j,
then a j <s wi(x) ∨ c j <s wi(x).
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Figure 8. Rigorousness

4. STM Consistency Conditions
4.1 Opacity

Opacity, introduced in [6], is the strictest consistency
condition known for STM. Informally, a history satisfies
opacity if all the committed and aborted transactions
(projected on the read operations) appear as if they
execute in a sequential order and this order respects
real-time occurrences of all transactions.

Definition 9 (Guerraoui and Kapalka [7]). A sequential
STM history S is legal if, for every shared variable x, the
restriction of the history S to operations on x is in the
sequential specification of x.

Definition 10 (Guerraoui and Kapalka [7]). A transac-
tion Ti is legal in a complete sequential history S, if STM
history visibleS(Ti) is legal, where visibleS(Ti) is the longest
subsequence S′ of S such that, for every transaction Tk in S′,
either (1) k = i, or (2) Tk is committed and Tk <S Ti.

Definition 11 (Guerraoui and Kapalka [7]). A finite
STM history H is final-state opaque if there exists a
sequential STM history S equivalent to some completion2

of H, such that

1. S preserves the real-time order of H, and
2. every transaction Ti in H is legal in S.

Definition 12 (Guerraoui and Kapalka [7]). A STM
history H is opaque if every finite prefix of H is final-state
opaque.

There is an equivalent characterization of opacity,
based on a graph representation of a history [7]. This
characterization assumes that operations are atomic,
and that writes are unique, i.e., the values written to
each data item are distinct.

A directed graph OPG(H) is defined for a STM
history H as follows.

Every transaction Ti is a vertex in the graph. It is
labeled vis if Ti is committed or if some transaction
reads from Ti, and loc, otherwise.

There are four types of edges:

1. Real Time (rt).
If a transaction Ti finishes before T j starts, there is
an edge from Ti to T j; it is labeled as rt.

2 Roughly, inserting abort for all ongoing transactions.

2. Read From (rf).
If T j reads a value written by Ti, then there is an edge
from Ti to T j; it is labeled rf.

3. Write Before (ww).
If T j overwrites a value written by Ti, and both Ti and
T j are committed or commit-pending3, then there is
an edge from Ti to T j; it is labeled ww.

4. Read Before Write (rw).
If T j is labeled vis, T j writes to data item x, and Ti
reads from another transaction that writes to x before
T j (this is well-defined since writes are unique and
atomic), then there is an edge from Ti to T j; it is
labeled rw.

The opacity graph for the history of Figure 9 is shown
in Figure 10. T0 is a “virtual” transaction, “writing” the
initial values of all data items. There is an rt edge from
T1 to T2 since T1 finishes before T2 starts. The edges
labeled as rf show that T3 is reading from T0, i.e. the
initial value of x and T2 is reading from T1. The ww edge
from T0 to T1 shows that the transaction T1 overwrites
an initial value. The rw edge from T3 to T1 shows that
T3 is reading a value overwritten by T1. Note that there
is no ww edge from T1 to T3, since T3 aborts.

Figure 9. Example

Figure 10. Opacity graph for the history of Figure 9

Theorem 1 (Graph characterization of opacity [7]). A
consistent STM history H is final-state opaque if and only if
the graph OPG(H) is acyclic.

4.2 Virtual World Consistency

Virtual world consistency (VWC) [11] is a weaker con-
dition than opacity. It requires that all the committed

3 A transaction is commit-pending if it has completed all its operations,
has invoked the termination operation and is waiting for its response.
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transactions appear to execute in a sequential order,
which also respects the real-time order of these transac-
tions. For each aborted transaction, VWC only requires
that the values it reads are consistent with respect only
to its causal past, i.e., the committed transactions from
which it reads and previously committed transactions
by the same thread.

Figure 11 shows example of a history which is virtual
world consistent but not opaque. Transaction T1 reads
a value of x written by T2, and hence considers only T2
and not T3.

Figure 11. A VWC history that is not opaque

5. Relating Database and STM conditions
5.1 Rigorousness is Contained in Opacity

Lemma 2. The graph OPG of a rigorous STM history is
acyclic.

Proof. Consider a rigorous STM history H. Suppose the
graph OPG(H) has a cycle of edges from transaction T1
to transaction T2, from transaction T2 to transaction T3,
and so on, and there is also an edge from transaction
Tn to transaction T1, completing the cycle. Each edge is
of one of the four types {rt, r f ,ww, rw}.

We argue for each edge (Ti,T j) that Ti must complete
before T j. By the definition of rigorousness, if a trans-
action T j is either reading from Ti (rf ), or overwriting
some data item written by Ti (ww) or overwriting a
value read by Ti (rw), then Ti must complete before the
corresponding operation by T j. This also means that Ti
must complete before T j, since last step of T j would
be a completing step. If the edge is labeled rt, Ti must
complete even before T j started.

Thus, T1 must complete before T2, T2 must complete
before T3, and so on. Finally, the edge from Tn to
T1 implies that Tn must complete before T1, which is
clearly not possible. This contradiction shows that the
opacity graph of a rigorous history is always acyclic.

�

Theorem 3. Rigorousness $ Opacity.

Proof. Consider a rigorous STM history H. By Lemma 2,
OPG(H) is acyclic. Hence, by Theorem 1, H is opaque.

Consider the history in Figure 12. It is opaque since
it is equivalent to the sequential history T1,T2. This

Figure 12. An opaque history that is not rigorous

history is not rigorous, since T1 does not complete
before T2 writes 2 to x. �

Note that STMs with invisible reads, in which read
operations do not write to any base object, can be
opaque but cannot be rigorous.

5.2 Strictness is Incomparable to Opacity

As mentioned, the history in Figure 12 is opaque;
however, is not strict since T2 writes the value of x
before T1 completes.

On the other hand, the history in Figure 13 is not
opaque since there is a cycle T2T3 in its opacity graph.
There is an rw edge from T2 to T3 and an r f edge from T3
to T2. However, this history is strict since T2 is reading
from T1 after T1 is complete and T2 is reading from T3
after T3 is completed.

Figure 13. A strict history that is not opaque

5.3 ACA and Recoverability

We have seen that there is a strict history that is
not opaque (Figure 13); this history is also ACA. We
believe that any opaque history is ACA (and hence
recoverable), since opacity does not allow inconsistent
reads, making it impossible for a transaction to read
from a uncommitted transaction, making the history
ACA.

5.4 Virtual World Consistency

Inspecting our results easily show that the same rela-
tionships hold also for VWC. For example, the strict
history of Figure 13, which is not opaque, does not sat-
isfy virtual world consistency either.

6. Non Eager STMs
Many STMs write their shared data only when it is
clear they are going to commit. This is in contrast
to STMs that write their new values with each write
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operation. We say that STMs of the first kind are non
eager, and remark that they may write to some base
objects before getting committed, e.g., acquiring a lock
or incrementing a shared counter.

All the database conditions that we have discussed
so far, assume commit is an atomic operation (like
read and write). This assumption is not valid when
commit has a duration and is not executed in exclusion.
During a commit operation, there is a point at which the
transaction is sure to commit successfully; we call this
the logical commit-point and it may be well before the
end of the commit operation. Non-eager STMs write
only after their logical commit-point. All the above-
stated relationships between STM and DB consistency
conditions hold even if the definitions of database
conditions are changed to refer to the logical commit-
point instead the commit.

6.1 Non-eagerness Implies Strictness

In non-eager STMs, a read operation always reads a
committed value, which enables to prove that they are
always strict.

Theorem 4. A non-eager STM is strict.

Proof. Since a transaction Tw writes its values only at the
commit point, any other transaction reads or overwrites
the committed values only after the logical commit-
point of Tw. �

Figure 14 shows the difference between strictness
and non-eagerness. This history is strict since the read
of shared variable x and the write of shared variable y,
by transaction T2, are done only after the transaction
T1 is completed (committed in this case). This history
is, however, not non-eager since all the writes are done
well before commit is invoked.

Figure 14. A strict history that is not non-eager

6.2 Non-eagerness is Incomparable to
Rigorousness and Opacity

The history in Figure 15 is not non-eager, since the write
of shared variable x (w1(x, 2)) is done before the commit
point. However, this history is rigorous (and hence
opaque) since the write of x by T2 is done only after
T1, which is reading a previous value of x, completes.

Consider the history in Figure 16 where writes of
T2 happen at the commit-point. This history is non-
eager since all the writes are done only at the commit

Figure 15. A rigorous history that is not non-eager

point only. This history is not opaque (and hence not
rigorous) since there is a cycle in the opacity graph,
between transaction T1 and transaction T2, because T2
overwrites the value of shared variable x read by T1
and T1 reads the value of shared variable y written by
T2.

Figure 16. A non-eager history that is not opaque

7. Discussion
Figure 17 summarizes the relationships we have proved
between STM and DB consistency conditions. It shows
that rigorousness is the strongest condition of all STM
and DB conditions, but the relationships between other
conditions is not clear.

Rigorousness imposes a condition between reads
and later writes to the same data item. This seems to
require that reads write to the shared memory, a prop-
erty that is considered undesirable in STM implementa-
tions. Proving that this is indeed a necessary condition,
and understanding the ramifications is an interesting
question.

This paper focused on opacity and VWC. Transac-
tional memory specification (TMS) [4] is another consis-
tency condition for STMs, defined using I/O automata.
The original definition of opacity [6] is not prefix-
closed, and hence there are histories that satisfy opacity,
but not TMS (cf. [4]). These histories do not satisfy the
updated definition of opacity [7], which we use. Un-
der the new definition, opacity is contained in TMS
and hence, rigorousness is also contained in TMS. It
seems that the other incomparability results hold also
for TMS, but verifying this precisely is left for future
work.

Another approach to STM consistency [13] builds
upon snapshot isolation. Snapshot isolation decouples
the consistency of the reads and the writes. Informally,
all read operations in a transaction return the value
of the most recent value as of the time the transaction
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Figure 17. Relating STM and DB conditions; numbers indicate the figures presenting the relevant example

starts. In addition, the write sets of any pair of concur-
rent transactions must be disjoint.

Both DB and STM aim to provide consistency con-
ditions that admit the maximal level of parallelism.
Looking back at the definitions, however, it is clear
that different perspectives are manifested in the way
the consistency conditions are defined. DB conditions
are defined at an operation level, in terms of basic op-
erations (reads and writes). On the other hand, STM
conditions are defined at a transaction level, in terms
of the sequences of responses that can be observed by
a thread (in a manner that follows serializability [12],
or linearizability [10]).

Our results relate these different levels, proving, in
one case, that a DB condition (rigorousness) implies
an STM condition (opacity). It would be interesting to
provide more systematic relations between these points
of view.

There is another, even higher level to define con-
sistency conditions, namely, from the point-of-view of
programs that employ transactions (e.g., [1]). It is very
intriguing (and important) to relate definitions at the
programming language level to definitions based on
allowed responses.
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