A case for Exiting a Transaction in the Context of Hardware
Transactional Memory

Isuru Herath, Demian Rosas-Ham, Daniel Goodman, Mikel Lujan, lan Watson
Advanced Processor Technologies Group
The University of Manchester
United Kingdom

{herathh, rosasd, goodmand, lujanm, watson}@cs.man.ac.uk

ABSTRACT

Despite the rapid growth in the area of Transactional Mem-
ory (TM), there is a lack of standardisation of certain fea-
tures. The behaviour of a transactional abort is one such fea-
ture. All hardware TM and most software TM designs treat
abort as a way of restarting the current transaction. How-
ever an alternative representation for the same functionality
has been expressed in some software transactional memories
and programming languages proposals. These allow the ter-
mination of a transaction without restarting. In this paper
we argue that a similar functionality is required for hardware
TM as well. We call this functionality Ezit Transaction, in
which a programmer can explicitly ask the underlying TM
system to move to the end of the transaction without com-
mitting it. We discuss how to extend a hardware TM system
to support such a feature and our evaluation with two hard-
ware TM systems shows that by using this functionality a
speedup of up to 1.35X can be achieved on the benchmarks
tested. This is achieved as a result of lower contention for
resources and less false positives.

Categories and Subject Descriptors

C.1.4 [Processor Architectures|: Parallel Architectures;
D.1.3 [Programming Techniques]: Concurrent Program-
ming

Keywords

Transactional Memory

1. Introduction

Transactional Memory was initially proposed [11] as a
direct generalisation of the load-linked-store-conditional in-
struction, in order to provide atomicity to more than a single
memory location. Since then, several Hardware TM (HTM)
systems have been proposed with different approaches for
versioning and conflict detection (eg:TCC [7], Log-TM [16]).
There have also been several attempts to standardise the
syntax and semantics of TM [13, 15, 17, 22]. Recently, sev-
eral chip manufactures unveiled proposals for hardware as-
sisted transactional memory including Sun’s Rock proces-
sor [4, 6], Azul [5], AMD-ASF[1] and Intel’s Haswell [12].

Despite all this work, there is a mismatch in the specifica-
tion of Abort_Transaction. All the TM community seem to
agree that if used when a conflict occurs an abort discards
all the speculative operations and reinstate the processor
to the state that it was in at the beginning of the transac-
tion. However, when it becomes possible to directly invoke

this function from user code two specifications can be found.
One is to discard all the speculative operations and to re-
store the state as it was at the beginning of the transaction
as in Log-TM [16], the majority of the TM proposals follow
this approach. The other specification proposes to discard
all the speculative operations and to transfer the control to
the end of the atomic block [17, 22]. All the proposed HTM
systems appear to follow the first specification.

In this paper we argue that support for both functions is
necessary for a hardware TM. We discuss how to extend a
hardware TM system to provide the behaviour expressed by
the second specification and evaluate the proposed function-
ality in two hardware TM systems.

In order to clarify the discussion, we name the functional-
ity expressed by the first specification as Restart_Transaction
and that of the second as Exit_Transaction. These are de-
fined as,

Restart_Transaction: Discard all the operations performed
within the atomic section and restart the transaction.

Exit_Transaction: Discard all the operations performed
within the atomic section and transfer the control to the end
of the atomic region.

The rest of the paper is organized as follows. Section 2
shows some code examples and discusses the need for the
Exit_Transaction functionality. Section 3 contains related
work and where possible how to use these approaches to
achieve the objective of Exit_Transaction. The transforma-
tion of existing code segments to use the FExit Transaction
functionality is shown in section 4. Architectural support
for Exit_Transaction is discussed in section 5. An evalua-
tion of Exit Transaction is presented in section 6 and the
applicability of Exit_Transaction on other hardware TMs is
discussed in section 7. Finally in section 8 we make our
concluding remarks.

2. Motivation

Transactional Memory(TM) [11] provides optimistic con-
currency for critical regions marked by programmers. The
marking of critical regions is typically made either with
the atomic{} keyword marking a block of code or with the
Begin_Transaction and End_Transaction instruction pair.
Once critical regions are marked in an application, the un-
derlying TM system ensures that the Atomicity, Consistency
and Isolation(ACI) properties are maintained for the marked
regions. In a lazy-lazy TM system all the operations are per-
formed speculatively within the critical section and atomi-
cally committed at the end. In a hardware TM system,
this commit phase normally involves writing all the modi-

fied cache entries to the next level memory.

The usefulness of the speculative operations are not con-
sidered at the time of committing. This is because at the
hardware level this usefulness cannot be determined. The
only information available is a set of memory locations and
their prospective values. On the other hand, at the pro-
gramming language level the usefulness of a transaction can
easily be extracted. Before continuing the discussion fur-
ther, we need to establish a definition for the usefulness of
a transaction. We define the usefulness as, if an application
contains a set of tasks and committing a transaction con-
tributes to the reduction of the size of this set, then it is a
useful transaction.

We will now look at three examples, (a) a benchmark, (b)
a micro-benchmark and (c) a real-life scenario.

21 LeeTM [24]

Lee is a routing algorithm whose objective is to find a
path from a given source point to a given destination point.
The TM algorithm proposed by Watson et al. [24] is com-
prised of two phases: expand and backtrack. The expand
routine starts from a source point and expands in all di-
rections until it reaches its destination. Once it reaches its
destination, it starts traversing backwards until it reaches
the source, recording in the process the optimal path. The
transaction in this algorithm, encompasses both the expand
and the backtrack methods. If the expand method was able
to reach its destination, it returns True, else it returns False.
The pseudocode of the algorithm is shown in Code 1.

Code 1 Lee-TM pseudocode
Begin_Transaction;
bool isFound=expand();
if (isFound){
backtrack() ;

}

End_Transaction;

If we apply the above definition of usefulness to this sce-
nario, the set of tasks we have is to find paths from source
points to destination points. If a committing transaction is
to be considered useful, it should have found a path from a
given source to a given destination, but finding a path re-
quires the execution of both expand and backtrack, however
the latter is executed only if the former returns True. As it
is not guaranteed that ezpand always returns True a trans-
action is not guaranteed to perform useful work. In such
situations, even if a transaction does not do any useful work,
the commit operation still takes place. This commit involves
writing back the modifications made to the local variables
and to the local grid in the expand phase. While these val-
ues do not have any use in the application the interconnect
is used to communicate the speculatively modified cached
entries to the next level memory. We are aware that opti-
misations to the algorithm can address some of these issues
in the algorithm presented, but the effect of these optimi-
sations can be negated by actions beyond the programmers
control such as nesting Lee within another transaction.

2.2 Red-Black Tree

A Red-Black tree is a data structure used in computer
science. The major operations associated with it are search,
insert and delete. Though we used this data structure for

the discussion, the situation can be applied to any appli-
cation that interacts with data stores. The insert and the
delete operations incorporate some form of search facility
because, before inserting an item, we need to find whether
another item with the same key already exists in the tree.
Similarly, to perform a delete operation we need to find the
item with the corresponding key. We could define the search
operation to return True if it finds an item with the given
key, then the insert and the delete operations can be per-
formed accordingly. In a TM version of the Red-Black tree,
a transaction is comprised of either, the search and the in-
sert or the search and the delete, and we cannot break the
atomicity between the two methods. The pseudocode of the
algorithm is shown in Code 2.

Code 2 Red-Black Tree TM pseudocode

insert_item(key){
Begin_Transaction;
bool isFound=search(key) ;
if (1isFound){
insert (key) ;

¥
End_Transaction;
}
delete_item(key){
Begin_Transaction;
bool isFound=search(key);
if (isFound){
delete(key);
}

End_Transaction;

An insert operation can be considered as useful only if it
tries to insert an item that does not exist in the tree. In case
of the delete, it becomes useful only if the item exists in the
tree. This issue applies to any application that uses a data
stores. For example, a customer trying to book a room in
a hotel will first search the room prices and availability, if a
suitable one is found they will reserve it. In a TM version,
both search and book have to be within a single transac-
tion and it becomes useful only if the customer completes
the booking stage. However, with the current approaches,
regardless of the usefulness of a transaction, a commit oper-
ation takes place.

2.3 Exceptions

If we consider a Java program that has a critical section
that can produce exceptions, we can have the Begin_Transac-
tion instruction after the try keyword. In a hardware TM,
any operation performed after this instruction will be per-
formed speculatively until the End_Transaction is executed.
Therefore if we place the End_Transaction within the try-
catch block, it will not get executed if an exception is thrown
before it. Since we need to execute End_Transaction regard-
less of whether an exception is thrown or not, we can place
the instruction within the finally block as shown in Code 3.
In this scenario it maybe that if a transaction is to be consid-
ered useful it should not produce any exceptions. However,
regardless of the usefulness of the commit the application
asks the underlying TM system to perform it.

2.4 Performance Il mpact

To get an intuition of the usefulness of commits we ex-

Code 3 Java TM code with exceptions

try{
Begin_Transaction;

}catch(Exception e){}
finally{
End_Transaction;

}

ecuted Lee-TM [24] and a TM version of Red-Black tree
with a lazy-lazy HTM system similar to TCC [7] using 2-8
cores. We instrumented the code to check the usefulness of
the transaction at commit time. For Lee-TM, if the back-
track phase is not executed we consider it as a non-useful
commit. In Red-Black tree, inserting an already existing
entry or deleting a non-existing entry are considered as non-
useful commits. For Lee-TM we used a 75X75 grid with 320
routes to explore and for Red-Black tree, we used a tree with
20000 entries and transactionally inserting/deleting 16000
items with 50% probability for each action. Table 1 shows
non-useful commits as a percentage of the total commits.
From Table 1 it is clear that a large number of commits are

Processors | Lee-TM | Red-Black Tree
2 35% 49%
4 35% 49%
8 34% 49%

Table 1: Non-useful Commits

not useful for the overall program completion. However, the
lack of usefulness does not reduce the number of commits
that are done by the underlying TM system. Therefore we
believe that a new functionality should be added to the ex-
isting hardware TM specification to allow the programmer
to tell the underlying TM “Discard this transaction’s com-
putation and proceed”.

3. Reated Work

In this section we review and summarise proposed TM
semantics, and discuss how they can be used to achieve the
above objective. We group them into software and hardware
approaches.

3.1 Software Approaches

Early release [10, 23] has been proposed as a way of reduc-
ing contention in both hardware and software TM systems.
The objective is that a programmer can remove an entry
from the read set of its current transaction. Thereafter any
write operation to this location by other transactions will
not cause conflicts with the current transaction. If we are
to use this feature to achieve our objective, then we have
to modify our code to remove all the memory locations that
are read and written during current transaction from the
read and write sets, if the current transaction is found to be
non-useful. This may be possible with STMs and also with
some HTMs, but most recent HTMs use signatures to keep
track of read and write sets. Signatures are implemented as
a fixed width bit representation, in which certain bits are
set according to the address being considered. One of the
features of signatures is that an element can be added to

it, but cannot be removed. Therefore we cannot use early
release to achieve our objective.

The TM construct orElse [9] is used to execute a second
transaction if the first one fails. If we used this approach
for our Lee-TM example, we would need to add a dummy
transaction as the “retry” condition. Then according to the
definition of orElse, in the case of a non-useful transaction
the dummy transaction should commit. While this achieves
our aim it does so with the loss of clear and concise syntax.

Crowl et al. proposed to integrate TM semantics in to
C++ [13]. There, the authors discuss different ways to exit
from a transaction. According to the authors, the “normal”
way to end a transaction is to commit it. They also suggest
to commit a transaction even if it is exited with typical C
language keywords like return, break, continue and goto. In
their specification another way to end a transaction is to
exit with longjmp. The idea is to abandon the speculative
operation without finishing it. Thereafter the environment
is restored with the one saved by setjmp. This is similar
to an abort operation, but still requires the transaction to
be restarted, this will lead to a live lock in our Lee-TM
example. Consider the case where expand cannot reach its
destination because all the possible paths have been blocked,
hence returns false. The same transaction will continue to
retry until it succeeds, but as no route exists this will never
happen.

TM constructs _tm_abort [17] and user-level aborts [22]
have the same objective as our Fxit Transaction. The pro-
posed behaviour is, once executed within a critical section,
to discard all the speculative modifications and to transfer
the control to the statement immediately following the crit-
ical section. However in these semantics, the programmer
looses the ability to explicitly abort or restart transactions,
they can only abort.

The xfork [19] framework allows programmers to define
logical relationships between sibling transactions. The basic
idea is to define nested transactions as AND, OR, or X-OR.
When declared as AND all the sibling transactions should
be completed in order to commit a transaction, when de-
clared as X-OR only one successful transaction should be
committed, and for transactions declared as OR each sib-
ling transaction can fail or succeed independently. If we use
this approach in the Lee-TM example, we can define both
ezpand and backtrack methods as AND sibling transactions
ensuring that we delay the execution of the latter until the
former completes due to data dependencies. Xfork API for
AND guarantees that, if any of the siblings returns false,
no transaction will commit and the transactions will retry.
Once again in the case of Lee-TM this can cause a live lock.

Finally, programming language extensions like aboz [§]
have been proposed in order to handle exceptions raised
within critical sections. However no direct hardware sup-
port is provided for this and our proposal fits the required
purposes well.

3.2 Hardware Approaches

McDonald et al. [15] propose the first Instruction Set Ar-
chitecture (ISA) for HTM. Alongside with the functionali-
ties expressed by previously proposed HTMs, authors sug-
gest three major operations to manage transactions: zbegin,
xcommit, zabort. As per with the abort_transaction function
in Log-TM [16], zabort instruction executes a code that is
registered with the abort handler. The purpose is to allow

the programmer to explicitly abort a transaction. If we use
this feature to achieve our objective, we need to construct
a dummy function which can explicitly transfer the control
to the end of the atomic block. Such a function would just
contain a goto statement to move the execution to the end
of the block. We then need to register this function with
the abort handler. Thereafter by invoking xabort, control
can be transferred to the end of the atomic block. How-
ever, we still need to inform the hardware not to restart the
transaction once the abort function completes because the
default behaviour of zabort is to do so. Since such a facility
is not provided, our objective cannot be achieved with the
proposed ISA.

Notary [25] is a TM system which proposes to separate
private and shared data and to exclude private data from
the read and write sets of a transaction. In their approach
authors propose using separate virtual pages for shared and
private memory locations. If we take their approach com-
piler and/or programming language support is needed to
allocate all the private data, including stack, in those pri-
vate pages. Then for the Lee-TM application we can make
the write set size to zero when the backtrack phase is not
executed. However, excluding local variables from the write
set may pose consistency violations in TM. Sanyal et al. [21]
propose an undo buffer to overcome this problem, but this
approach requires extra hardware whose size cannot be de-
termined in advance and also requires modifications to the
memory management and to the run time systems.

Hardware support for TM has already been incorporated
within Azul chips [5]. Their API also provides an Abort in-
struction which marks all the speculatively modified cache
lines as invalid. However, it is not well defined whether the
control is transferred to the beginning of the critical sec-
tion [15] or to the end [22]. The Sun’s Rock processor [4,
6] also provides TM support. Their design comes with only
two extra instructions: chkpt and commsit. When a trans-
action is started by a chkpt instruction, a pc-relative fail
address can be registered with the transaction itself, con-
trol is then transferred to this address in case of an abort.
They also provide an unconditional trap instruction which
provides the facility to cause explicit aborts from software.
Unfortunately this fail address feature is not able to achieve
our objective because we have to register it at the beginning
of the transaction and at that time we don’t know whether
the transaction is going to be useful or not. If we were to use
this fail-address feature, modifications are required. These
modifications include when registering the pc-relative fail
address, two addresses need to be registered: one pointing
to the beginning of the transaction and the other pointing
to the end of it. Later when invoked from the use code, we
need to pass a value which indicates whether to retry or to
exit. Then depending on this value, the abort mechanism
will decide which operation to perform.

The Advanced Synchronization Facility(ASF) [1] is a pro-
posal for extending hardware support for lock free data struc-
tures. They introduce 7 new instructions including Abort.
Like with the ISA proposed by McDonald et al. [15], the
Abort instruction rolls back the speculative region and the
state is restored using the snapshot taken when the Speculate
instruction was executed. The control is then transferred to
the instruction proceeding the Speculate instruction. This
instruction is a JNZ instruction which as the Abort has set
the zero flag will jump to a handler. This handler can then

decide based on the flags set by the abort what it should
do next. Jumping to the end of the transaction is an op-
tion, but becuase there are no flags to signal that the user
initiated the abort this cannot be done as the direct result
of the programmer including a Exit_Transaction instruction.
As a result while the required changes are small it currently
cannot be used to achieve our objectives.

IBM recently presented the speculation support in their
Blue Gene/Q chip [18]. However neither the ISA additions
nor the API is available to discuss how we can achieve our
objective in their system.

3.3 Summary

From the survey presented in this section, we can see that
there is no direct hardware proposal to avoid committing
non-useful transactions, despite such a semantic being pro-
posed at the programming language level [17, 22]. This is
ironic given that such a feature is more valuable to HTM
than to STM because STM systems can produce a write set
of zero size for Lee-TM when the backtrack phase is not ex-
ecuted. This is not the case with most of the hardware TM
systems.

4. Exit_Transaction

At the level of the algorithm the programmer knows when
a transaction is useful and when it is not. If provided with
API calls similar to Begin_Transaction and End_Transaction
the programmer can invoke these to notify the underlying
TM system that the current transaction is not useful, hence
discarding all the speculative operations and progressing to
the end of the atomic section. We call this functionality
as Fxit_Transaction. The intended behaviour of the func-
tion is similar to an abort operation except that it does not
restart the same transaction. It is also similar to a com-
mit operation in the sense that control is transferred to the
end of the atomic block, but speculative modifications are
not communicated. Adding this functionality to an existing
program does not add any complexity because the informa-
tion to make this decision is already available in the program
itself. In Code 4 we show how to modify the examples used
in Section 2 to enable them to use this proposed feature.

Ezit_Transaction can also used to increase the programma-
bility of certain problem statements. For example consider
a situation where a linked-list needs to be reversed if it
found to be greater than a given threshold. A conventional
way of achieving this is to count the elements of the list
in a first pass and if it found to have a length longer than
the given threshold use a second pass to reverse. This is
shown in the top portion of Code 5. With the introduction
of Ezxit_Transaction, we can rewrite the reverse method to
speculatively reverse the list while counting the elements so
requiring just one pass. Thereafter if the number of ele-
ments is greater than the given threshold, the transaction is
committed, but if the condition is not met, the speculative
modifications are abandoned using Ezit_Transaction so the
list remains unchanged. This is shown in the lower part of
Code 5.

One could argue that we have not taken any explicit mea-
sures to transfer the control to the instruction following the
atomic block as in __tm_abort [17] or in user-level aborts [22]
proposals. However, this is not required in our approach
because when the FExit_Transaction is invoked the program
counter register is already pointing to the end of the atomic

Code 4 Adding Exit_Transaction to existing code

Code 6 Incorrect usage of Exit_Transaction

Begin_Transaction;
bool isFound=expand();
if (isFound){
backtrack();
End_Transaction;
Yelsed{
Exit_Transaction;

}

insert_item(key){
Begin_Transaction;
bool isFound=search(key);
if (1isFound){

insert (key) ;
End_Transaction;
}else{
Exit_Transaction;
}
}
try{

Begin_Transaction;

End_Transaction;
}catch(Exception e){
Exit_Transaction;

}

Code 5 Improving Programmability with Ezit_Transaction.

length = count(list);
if (length > THRESHOLD) {
reverse(list)

}

modified_reverse(list){

Begin_Transaction;

while(more elements) {
count
reverse

}

if (count > THRESHOLD){
End_Transaction;

}elsed{
Exit_Transaction;

}

block. This can be seen in all the modified codes shown
in Code 4. It is not possible to construct a case where
such control transfer is necessary because any code after the
Ezit_Transaction instruction is simply not transactional. If
there is a situation where code after the test needs to be
transactional this means that the particular condition in the
atomic block cannot be used to measure the usefulness of the
commit. For example consider the top portion of the code
shown in Code 6. Here one might consider the condition in
line 3 as the condition to measure the usefulness and may
modify the code to use the Ezit_Transaction feature. The
modified code is shown in the lower part of Code 6. This
is clearly a wrong usage of the Fxit Transaction function
because regardless of the condition in line 3, the statement
in line 8 in the original code gets executed within the same
transaction. Therefore we cannot use Fzit_Transaction fea-
ture in this situation.

0: Begin_Transaction;
1: AAA

2: BBB

3: if(condition){

4: CCC

5: DDD

7: }

8: EEE

9: End_Transaction;

0: Begin_Transaction;
1: AAA

2: BBB

3: if(condition){

4: CCC

5: DDD

6: End_Transaction;
7: Yelse{

8 Exit_Transaction;
9: }

10: EEE

5. Architectural support for Exit_Transaction

In this section we discuss how to extend two hardware TM
systems to support Fxit Transaction. For this we used an
improved version of Transactional Memory Coherence and
Consistency (TCC) [7] as the baseline architecture. The
transactional memory implementation in the baseline is sim-
ilar to any other lazy-lazy hardware TM system. In order
to provide an unbounded amount of transactional data, the
baseline uses hardware signatures [20] to maintain the read
and write sets, using parallel bloom filters to increase ac-
curacy. Since our baseline architecture is based on TCC
which does not implement any coherence protocols, transac-
tions are used to maintain coherence and consistency as well.
Therefore at the end of a transaction the next level memory
copies are updated and local copies which are read or writ-
ten to are flushed. This is necessary to avoid local caches
ending up using stale data due to the lack of conventional
coherence protocols.

When a processor needs to commit a transaction, it first
requests commit permission from a centralised commit ar-
biter. Commit permission is granted based on a least re-
cently granted policy. Once the commit permission is granted,
the committing processor broadcasts its write-signature to
all the other processors. Upon receiving this write-signature,
each processor performs a bitwise AND operation on their
read-signature. If all the hashes in the resulting signature
are non-zero, then it is considered as a conflict and the pro-
cessor aborts. After sending the write-signature to all the
other processors, the committing processor updates the next
level memory (either level 2 cache or main memory) with all
the speculatively modified values. During this commit phase
the communication arbiter denies any request to use the in-
terconnect. Once the next level memory is updated with all
the speculatively modified cache entries, all these entries are
flushed and both read and write signatures are cleared.

51 Basdine-1l: TM-S

Commits are serialised in the first baseline (TM-S) when
addressing cache overflows within a transaction. That is,
when a cache entry modified in the transaction needs to be
ejected while a processor is inside a transaction, permission

is sought from the overflow arbiter. Like commit permission,
overflow permission is also granted based on a least recently
granted policy. Once the overflow permission is granted, the
processor flushes the cache line from its L1 cache and up-
dates the corresponding entry either in L2 cache or main
memory. An extra ‘W’ bit is used to mark all the specula-
tively modified entries. A dirty bit is not sufficient for this
purpose because the entry could have been dirty due to a
write operation performed outside a transaction. If the ‘W’
bit is not set, there is no need to seek overflow permission
and the processor can flush it to its original location. If an
overflow request is denied, the processor stalls until the re-
quest is granted. Earlier in this section, we said that the
commit arbiter operates on a least-recently-granted policy.
There is an exception to this in TM-S version of the base-
line. That is, once the overflow permission is granted to
a processor, all the commit requests from other processors
are denied, until the overflowing processor commits. This is
because once a speculatively modified entry is written back
to the next level memory the original value is lost making
this transaction non-reversible. Allowing cache overflows to
speculatively modified entries, can be considered as violating
atomicity and isolation properties of the lazy-lazy transac-
tional memory. This is because the overflowed cache entries
can now be read by other processors before their current
transaction commits. However we can maintain the con-
sistency property by making the current transaction of the
overflowing processor an unabortable one. As described ear-
lier this is achieved by denying all the commit requests until
the overflowing processor commits.

In TM-S unabortable transactions raise issues for the im-
plementation of Fzit_Transaction. For example in a situa-
tion where a processor has been given overflow permission
and then invoked Ezit_Transaction. According to the spec-
ification of Exit_Transaction, now it should discard all the
speculative changes and move to the end of the atomic block.
However, we cannot discard all the changes because the over-
flowed memory operations have modified the original mem-
ory locations and their old values have been lost. If we did
not have this FEzit_Transaction feature we would commit
this transaction even if it did not do any useful work. Such
a commit would write back the remaining speculative val-
ues in the cache to their memory locations in the next level
memory. We will now examine what would happen if this
transaction is not committed. In the case of Lee-TM the
modifications made to the local grid would not be visible to
other processors, but none of the other processors can access
these values, this is also true for the Red-Black tree. When
deciding the required functionality for the Exit_Transaction
for an unabortable processor in the TM-S system, we have
the flexibility to either commit or discard the remaining
speculative values. In this experiment we used the latter,
that is to discard the remaining speculative values in the
level 1 cache. However, if as in the linked list example in
Code 5 we allow transactions to speculatively modify global
state and rely on Ezit_Transaction to revert the changes,
further work would be required to guarantee consistency is
not undermined.

5.2 Basdine-2: TM-U

In order to support an unbounded amount of transactional
data the second baseline implementation (TM-U) overflows
into a separate uncached area of memory. This is the same

as in Unbounded Transactional Memory (UTM) [2]. The
design and the protocol are similar to those of UTM, ex-
cept that as we use signatures TM-U does not stall to check
for potential conflicts that might arise from overflowed loca-
tions. When a cache line with the dirty bit set is to be over-
flowed the entire cache line including the tag, valid, dirty and
data bits are preserved in this uncached area. Each entry
is indexed by a modulo of the hash value of the overflowed
memory location. Each processor also has an extra register
(Overflow_Address) which points to the starting location of
this separate area. If more than one memory location pro-
duced the same index, a linked list is formed. Finding an
entry involves first retrieving the index and then retrieving
the corresponding cache entry or list of cache entries stored
under that index. A linear search is then performed by com-
paring the tag and index of each element in the list. TM-U
has an extra bit called O per cache line to indicate the over-
flow status. This is set when a cache line is overflowed and
is cleared only when a transaction commits or aborts. Even
if an existing cache line is replaced with new data, this bit
does not get changed.

In the TM-U approach, overflowing transactions are not
serialised and the original memory locations are not modi-
fied. Therefore when FEzit_Transaction is invoked no extra
effort is required to undo the speculative operations. Dis-
carding transactional operations can be done by invalidat-
ing speculatively modified cache entries and clearing the un-
cached area of the memory. Adding support for Ezit_Transa-
ction in this baseline does not incur any consistency viola-
tions.

6. Evaluation

The evaluation of the FEzit_Transaction feature is pre-
sented in this section. After discussing the evaluation setup
in section 6.1, in section 6.2 we show that using the Ezit_Tra-
nsaction function a TM system can outperform the lazy-lazy
HTM systems that do not support such a feature. We also
characterise the results in the same section.

6.1 Evaluation Setup

As our proposal relies on transactions we modelled a lazy-
lazy hardware transactional memory system in Simics [14],
a full system simulator running Linux (version 2.6.16). The
TM system is configured with the components shown in Ta-
ble 2. In addition to these, the baseline-2 (TM-U) uses a
perfect hash function to index its overflowed memory loca-
tions. The Lee’s routing algorithm [24] and a TM version of
the Red-Black tree are used to evaluate the Fxit_Transaction
feature. Both applications were modified to exit from a
transaction if it is found not to be useful, as shown in Code 4.
Unmodified versions of both applications were executed for
comparison purposes. Lee-TM uses 75X75 grid and 320
routes as the input. A tree with 20,000(0<+200,000) nodes
and 16000(04+200,000) insertions/deletions with 50% prob-
ability for each was used for the Red-Black tree experiment.

6.2 Performance

Figure 1 shows the speedup measured using the Exit_Tran-
saction function over baseline architectures that do not sup-
port such functionality. With TM-S architecture using Exit_-
Transaction functionality we achieved a speedup of upto
1.35X and with TM-U the speedup is 1.23X.

Component Feature

Processors 1-8

L1 Data Cache | 2 way assoc, 64 B line, 32 KB size,

2 cycle latency, private per core

Signature 2048 Bits, 4 Parallel H3 [3] Hash functions
L2 Data Cache | 8 way assoc, 64 B line, 4 MB size,

20 cycle latency, shared

Split-transaction bus, 4 cycle latency,

64 B data width

100 cycle latency

Interconnect

Main Memory

Table 2: Components and Features.

Red-Black Tree Lee-T™M
1.60 1.60
1.40 1.40
1.20 1.20
1.00 1.00
0.80 0.80
0.60 0.60
0.40 0.40
0.20 0.20
0.00 0.00
2 4 8 2 4 8

B T™-s OTM-U

Figure 1: Speedup of using Exit_Transaction over baseline
implementations.

We characterise our results with several parameters in or-
der to measure the effect of the Ezit_Transaction feature and
what makes the speedup to vary between both systems and
applications. First we analysed the percentage of transac-
tions that used the Exit_Transaction feature. Table 3 shows
how many times Ezxit_Transaction feature has been used as a
percentage of total commits. There we can see for the Red-
Black tree, the percentage is around 50% in both systems,
and 10%-12% for Lee-TM. Since the Red-Black tree uses the
Exit_Transaction feature more than Lee-TM, one might ex-
pect it to show bigger speedup in Figure 1, however this is
not the case.

Processors TM-S TM-U
Lee-TM | RB Tree | Lee-TM | RB Tree
2 11.40% 50.11% 12.02% 49.97%
4 11.48% 49.84% 12.00% 49.77%
8 11.33% 50.24% 11.84% 49.73%

Table 3: Usage of Exit_Transaction as a Percentage of Total
Commits

Next we measured the size of the write set. If the size of
the write set is small the amount of time spent committing
may not make a significant difference to the overall execu-
tion time and the risk of overflow and false conflicts will be
smaller. Therefore we analysed the amount of speculative
data committed in both applications. Table 4 shows the
average number of bytes committed per transaction in both
applications for both systems. From Table 4 we can see that
Lee-TM has a significantly bigger write set size in compari-
son to that of the Red-Black tree. Therefore exiting from a
transaction without committing it gives a bigger advantage
to Lee-TM than it does to the Red-Black tree. This results
in Lee-TM showing better speedups than the Red-Black tree

example.
Processors TM-S TM-U
Lee-TM | RB Tree | Lee-TM | RB Tree
2 9519.15 518.38 9742.59 580.00
4 9941.44 529.47 9704.24 588.78
8 11864.72 534.09 9929.95 592.80

Table 4: Bytes Committed per Transaction

Not using the interconnect for non-useful commits reduces
the contention for it, in other words, one of the overheads
incurred by unnecessary commits is the bus contention. In
both TM systems the communication arbiter is designed to
give the highest precedence to commit requests. Since a
commit phase takes time to complete all bus requests are
denied during this time, this further increases the bus con-
tention. Figure 2 shows the number of requests denied as a
result of bus contention in both TM systems. TM-S-Baseline
refers to the TM-S architecture(section 5.1) without sup-
port for Ezit_Transaction, similarly TM-S-Exit_Transaction
refers to the TM-S architecture (section 5.1) with support
for Exit Transaction. The same applies for TM-U-Baseline
and TM-U-Exit_Transaction.

Red-Black Tree Lee-TM
2000000 2000000

200000 200000

Bus Access Denials
Bus Access Denials

4 8 2 4 8
B TM-S-Baseline O TM-S-Exit_Transaction & TM-U-Baseline B TM-U-Exit_Transaction

Figure 2: Bus Contention

From Figure 2 we can see that as expected both appli-
cations show less bus contention when the Exit_Transaction
functions is being used. This is mainly because of the re-
moval of commits that are not useful to the completion of
the program.

We also measured the number of false positives when test-
ing for conflicting transactions in both applications on both
systems when the Ezit_Transaction function is used. This
is shown in Figure 3. For the Red-Black tree there is no
significant difference between two TM systems, but in the
case of Lee-TM we can see that TM-U produces more false
positives than TM-S. The reason for this is that the trans-
actions in Lee-TM often cannot be held in the level 1 cache
and overflow during the execution of the atomic block. Be-
cause TM-S serializes commits in this situation it only has
one large transaction at any given time. In the case of TM-
U, there can be any number of large transactions running at
a given time, this increases the probability of false positives.
In addition when a transaction becomes longer, more ad-
dresses are inserted to the signature. When more addresses
are inserted to the signature it increases the probability of
producing false positives.

Red-Black Tree Lee-TM

1800 900
1600 800
1400 700
1200 600
1000 500
800 400
600 300
400 200

- * will
0 0

2 4 8 2 4 8

HT™-s OTM-U

Figure 3: False Positives

7. Applicability of Exit_Transaction on other
TM Systems

So far we have only demonstrated the advantages of Exit_-
Transaction with respect to lazy versioning HTM systems,
we will now consider the applicability of our proposal to ea-
ger versioning HTM systems. In an eager system all modifi-
cations are made in-place and this reduces the commit over-
head. In such a system when Ezit_Transaction is invoked it
has to discard all the speculatively written entries as in a lazy
versioning system. If the transaction fits in the L1 caches
the cost of this process is same for both eager versioning and
lazy versioning HTMs. If the transaction has overflowed the
cache, for eager versioning HTMs this involves reading the
original value from a separate log and replacing the modi-
fied entry with this value. For lazy versioning HTMs this
depends on how the overflows are handled. For examples
in TM-S baseline it is not possible to restore such memory
locations as the original value is not recorded. In the case
of TM-U baseline, this involves clearing the overflow area of
the memory. This means that lazy versioning HTMs have an
advantage over the eager ones when a transaction does not
fit in the L1 cache. However, this costly step is only required
if we are supporting speculative modifications to data struc-
tures as in the linked list example. For our benchmarks this
would not be required. Avoiding the commit phase for non-
useful transactions reduces the bus contention which counts
for a certain fraction of the reported speedups. In the case
of eager versioning HTMs this will not result in as direct an
advantage as it does for lazy ones.

We do believe even eager versioning HTMs will also bene-
fit from Fxit_Transaction functionality being provided. For
example, consider the situation where a transaction fits in
the L1 cache of a eager HTM system. Even though the
transaction is not useful, a commit operation is performed.
Since the transaction fits in the cache, no communication is
done at the commit phase. For simplicity, lets assume the
cache is filled with transactionally modified entries. Later
when a cache miss is encountered space has to be allocated
in the current cache by writing back an existing entry. Even
though this entry is modified, the value has no use as it be-
longs to a non-useful transaction. If Ezit_Transaction func-
tionality is being provided, it could have cleared all these
entries thereby avoiding this communication. A similar sit-
uation where Ezit_Transaction can be useful to eager HTMs
is when a context switch happens after the commit phase of
a non-useful transaction. In such situations all the dirty
cache entries need to be saved before allocating space for
cache requests of the new process. This saving of state re-

quires communication, if Ezit_Transaction functionality is
provided this communication can be avoided by clearing the
dirty cache entries of non-useful transactions.

8. Conclusion

This paper has presented a case for the need of the Exit T-
ransaction function to be added to hardware TM systems.
In addition, we also showed how an existing HTM system
can be extended to support such a feature. We evaluated the
Ezit_Transaction feature using the Lee-TM and a transac-
tional version of the Red-Black tree with two hardware TM
systems. Our results showed that with hardware support for
Ezit_Transaction, we can achieve a speedup of up to 1.35X
for the applications tested. This speedup is gained from a
combination of lower false positives, lower bus contention
and less wasted processor time.

9. Acknowledgements

We would like to thank anonymous reviewers for their
advice on the paper. Isuru Herath is supported by an Over-
seas Research Studentship and a School of Computer Science
studentship from the University of Manchester. Demian
Rosas-Ham is supported by the National Council of Science
and Technology of Mexico. Dr. Goodman is supported by
the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 249013 (TERA-
FLUX-project). Dr. Lujdn is supported by a Royal Society
University Research Fellowship.

10. REFERENCES

[1] Advanced Micro Devices. Amd advanced
synchronization facility proposal. http://developer.
amd . com/tools/ASF/Pages/default.aspx, 2009.

[2] C.S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E.
Leiserson, and S. Lie. Unbounded transactional
memory. IEEE Micro, 26:59-69, 2006.

[3] J. L. Carter and M. N. Wegman. Universal classes of
hash functions (extended abstract). In Proceedings of
the minth annual ACM symposium on Theory of
computing, STOC 77, pages 106-112, New York, NY,
USA, 1977. ACM.

[4] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson,

A. Landin, S. Yip, H. Zeffer, and M. Tremblay. Rock:
A high-performance sparc cmt processor. Micro,
IEEE, 29(2):6 —16, march-april 2009.

[5] C. Click. Htm will not save the world. Presentation at
TMW10 workshop, May 2010.

[6] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early
experience with a commercial hardware transactional
memory implementation. In Proceeding of the 1jth
international conference on Architectural support for
programming languages and operating systems,
ASPLOS ’09, pages 157-168, New York, NY, USA,
2009. ACM.

[7] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency. In Proceedings of
the 31st annual international symposium on Computer
architecture, ISCA ’04, pages 102—, Washington, DC,
USA, 2004. IEEE Computer Society.

8]

[10]

D. Harmanci, V. Gramoli, and P. Felber. Atomic
boxes: coordinated exception handling with
transactional memory. In Proceedings of the 25th
European conference on Object-oriented programming,
ECOOP’11, pages 634—657, Berlin, Heidelberg, 2011.
Springer-Verlag.

T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy.
Composable memory transactions. In Proceedings of
the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPoPP ’05,
pages 48-60, New York, NY, USA, 2005. ACM.

M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer, I11. Software transactional memory for
dynamic-sized data structures. In Proceedings of the
twenty-second annual symposium on Principles of
distributed computing, PODC ’03, pages 92-101, New
York, NY, USA, 2003. ACM.

M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In
Proceedings of the 20th annual international
symposium on Computer architecture, ISCA '93, pages
289-300, New York, NY, USA, 1993. ACM.

Intel Corporation. Intel architecture instruction set
extensions programming reference.
http://software.intel.com/file/41417, 2012.

V. L. M. M. Lawrence Crowl, Yossi Lev and

D. Nussbaum. Integrating transactional memory into
c++. In TRANSACT °07: 2nd ACM SIGPLAN
Workshop on Transactional Computing, August 2007.
P. Magnusson, M. Christensson, J. Eskilson,

D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,

A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35:50-58, 2002.

A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh,
H. Chafi, C. Kozyrakis, and K. Olukotun.
Architectural semantics for practical transactional
memory. In Proceedings of the 33rd annual
international symposium on Computer Architecture,
ISCA ’06, pages 53—65, Washington, DC, USA, 2006.
IEEE Computer Society.

K. Moore, J. Bobba, M. Moravan, M. Hill, and

D. Wood. Logtm: log-based transactional memory. In
High-Performance Computer Architecture, 2006. The
Twelfth International Symposium on, pages 254 — 265,
2006.

Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach,

S. Berkowits, J. Cownie, R. Geva, S. Kozhukow,

R. Narayanaswamy, J. Olivier, S. Preis, B. Saha,

A. Tal, and X. Tian. Design and implementation of
transactional constructs for ¢/c++. In Proceedings of
the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and
applications, OOPSLA 08, pages 195-212, New York,
NY, USA, 2008. ACM.

M. Ohmacht. Hardware support for transactional
memory and thread-level speculation in the ibm blue
gene/q system. Presentation at Wild and Sane Ideas
in Speculation and Transactions workshop, October
2011.

H. Ramadan and E. Witchel. The Xfork in the road to
coordinated sibling transactions. In TRANSACT ’09:
4th ACM SIGPLAN Workshop on Transactional

(21]

(22]

23]

(24]

Computing, February 2009.

D. Sanchez, L. Yen, M. D. Hill, and

K. Sankaralingam. Implementing signatures for
transactional memory. In Proceedings of the 40th
Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 40, pages 123133,
Washington, DC, USA, 2007. IEEE Computer Society.
S. Sanyal, S. Roy, A. Cristal, O. S. Unsal, and

M. Valero. Dynamically filtering thread-local variables
in lazy-lazy hardware transactional memory. In HPCC
’09: Proceedings of the 2009 11th IEEE International
Conference on High Performance Computing and
Communications, pages 171-179, Washington, DC,
USA, 2009. IEEE Computer Society.

T. Shpeisman, A.-R. Adl-Tabatabai, R. Geva, Y. Ni,
and A. Welc. Towards transactional memory
semantics for c++. In Proceedings of the twenty-first
annual symposium on Parallelism in algorithms and
architectures, SPAA ’09, pages 49-58, New York, NY,
USA, 2009. ACM.

T. Skare and C. Kozyrakis. Early release: Friend or
foe? In TRANSACT ’06: 1st ACM SIGPLAN
Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing, June 2006.

I. Watson, C. Kirkham, and M. Lujan. A study of a
transactional parallel routing algorithm. In
Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques,
PACT ’07, pages 388-398, Washington, DC, USA,
2007. IEEE Computer Society.

L. Yen, S. C. Draper, and M. D. Hill. Notary:
Hardware techniques to enhance signatures. In
MICRO ’08: Proceedings of the 2008 41st IEEE/ACM
International Symposium on Microarchitecture, pages
234-245, Washington, DC,; USA, 2008. IEEE
Computer Society.

