
Unmanaged Multiversion STM ∗

Li Lu Michael L. Scott
University of Rochester

{llu,scott}@cs.rochester.edu

Abstract
Multiversion STM systems allow a transaction to read old
values of a recently updated object, after which the transac-
tion may serialize before transactions that committed earlier
in physical time. This ability to “commit in the past” is par-
ticularly appealing for long-running read-only transactions,
which may otherwise starve in many STM systems, because
short-running peers modify data out from under them before
they have a chance to finish.

Most previous work on multiversion STM assumed an
object-oriented, garbage-collected language. In contrast, we
present a multiversion STM system designed for unman-
aged languages, in which ownership information is typically
maintained on a “per-slice” (rather than a “per-object”) ba-
sis, and in which automatic garbage collection may not be
available. We have implemented this UMV system as an ex-
tension to the TL2-like LLT back end of the RSTM suite.
Experiments with microbenchmarks confirm that UMV can
dramatically reduce the abort rate of long read-only trans-
actions. Overall impacts range from 2× slowdown to 5×
speedup, depending on the offered workload.

1. Introduction
Long-running transactions, even if read-only, pose a chal-
lenge for many STM systems: if transaction T reads location
x early in its execution, it will typically be able to commit
only if no other thread commits a change to x while T is still
active. Since readers are “invisible” in most STM systems,
writers cannot defer to them, and a long-running reader may
starve. The typical solution is to give up after a certain num-
ber of retries and re-run the long reader under the protection
of a global lock, excluding all other transactions and making
the reader’s completion inevitable (irrevocable).

A potentially attractive alternative, explored by several
groups, is to keep old versions of objects, and allow long-
running readers to “commit in the past.” Suppose transaction
R reads x, transaction W subsequently commits changes
to x and y, and then R attempts to read y. Because the
current value of y was never valid at the same time as R’s
previously read value of x, R cannot proceed, nor can it
switch to the newer value of x, since it may have performed
arbitrary computations with the old value. If, however, the

∗ This work was supported in part by the National Science Foundation under
grants CCR-0963759, CCF-1116055, and CNS-1116109.

older version of y is still available, R can safely use that
instead. Assuming that the STM system is otherwise correct,
R’s behavior will be the same as it would have been if it
completed before transaction W .

Multiversioning is commonplace in database systems. In
the STM context, it was pioneered by Riegel et al. in their
SI-STM [15] and LSA [14] systems, and, concurrently, by
Cachopo et al. in their JVSTM [4, 5]. SI-STM and LSA
maintain a fixed number of old versions of any given ob-
ject. JVSTM, by contrast, maintains all old versions that
might potentially be needed by some still-running transac-
tion. Specifically, if the oldest-running transaction began at
time t, JVSTM will keep the newest version that is older than
t, plus all versions newer than that.

In all three systems, no-longer-wanted versions are manu-
ally deleted by breaking the last pointer to them, after which
the standard garbage collector will eventually reclaim them.
More recently, Perelman et al. [12] demonstrated, in their
SMV system, how to eliminate manual deletion: they distin-
guish between hard and weak references to an object version
v, and arrange for the last hard reference to become unreach-
able once no running transaction has a start time earlier than
that of the transaction that overwrote v.

Several additional systems [1, 3, 9–11] allow not only
readers but also writers to commit in the past. Unfortunately,
because such systems require visible readers and complex
dependence tracking, they can be expected to have signifi-
cantly higher constant overheads. We do not consider them
further here.

SI-STM, LSA, JVSTM, and SMV were all implemented
in Java. While only SMV really leverages automatic garbage
collection, all four are “object-based”: their metadata, in-
cluding lists of old versions, are kept in object headers. One
might naturally wonder whether this organization is a coinci-
dence or a necessity: can we create an efficient, multiversion
STM system suitable for unmanaged languages like C and
C++, in which data need not be organized as objects, and in
which unwanted data must always be manually reclaimed?

Our UMV (Unmanaged MultiVersioning) system an-
swers this question in the affirmative. As described more
fully in Sec. 2, UMV is a “slice-based” STM system in the
style of TL2 [7] and TinySTM [8]. It maintains an array of
ownership records (Orecs), in which metadata are shared
by all locations that hash to a given slot in the array. Time-
stamps on Orecs are used to identify conflicts among writers.

1 2012/2/15

In contrast to most systems, however, UMV attaches chains
of old data versions to each Orec, so readers can work in
the past. When memory runs low, any thread can peruse the
Orec table and reclaim any versions that predate the oldest
still-active transaction.

We have implemented UMV as a new back end in the
RSTM suite [13]. It is based on the existing LLT back end,
which resembles TL2. It is not privatization safe, though
this could certainly be added. Experiments with microbench-
marks (Sec. 3) suggest that UMV successfully eliminates the
starvation problem for long-running readers, yielding dra-
matically higher throughput than single-version systems for
workloads that depend on such transactions. The penalty
is higher constant overhead—a reduction in throughput for
read-write transactions of up to 2× in our (as yet unopti-
mized) implementation. Additional issues, including how to
identify transactions that ought to run in the past and how to
tune garbage collection, are discussed in Sec. 4.

2. Multi-versioning TL2 Design
In this section we introduce the algorithm design of UMV.
Generally, on writer transaction commits, UMV will back up
all changed values to a history list. When a read-only trans-
action discovers that a concurrent write may have changed
the value in a location it is reading, it will search for and
then return an appropriate old value from a history list. In
this way, read-only transactions will never abort. In order to
reclaim unused history version data, we include a garbage
collection mechanism.

2.1 Algorithm design
As suggested in Sec. 1, UMV can be described as an ex-
tension to timestamp-based STM systems like TL2. As in
“stripe-based” TL2 [7], each entry in a global Orec table
stores metadata for locations that hash to that entry. Each
entry (Orec) contains a lock bit, a version number, and, for
multiversioning, a history list. The history list stores all his-
torical values that may be used for a stripe. Each node n in
the list has three fields: a memory location addr, a value
formerly contained in addr, and the global timestamp (ver-
sion number) ts when this value was overwritten.

Nodes are kept in time-sorted order, with the newest en-
tries at the head. For a given list node n, if n′ is the next-older
entry in the same list such that n.addr = n′.addr, we know
that location n.addr held value n.value from time n′.ts up
to but not including time n.ts.

UMV differs from TL2 in its code for writer transaction
commits, read-only transaction reads, and garbage collec-
tion. On writer transaction commits, UMV must back up all
changed values into history lists. On a shared-memory read
in a read-only transaction T , if the relevant Orec has a ver-
sion number newer than T ’s start time, instead of aborting,
T will traverse the history list and return an historical value.

1 W_Begin_Transaction ():

2 tx.start_time = timestamp

3

4 W_Read(address l):

5 v = tx.write_set.find(l)

6 i f (found) r e t u r n v

7 tx.read_set.add(l)

8 o = get_orec(l)

9 ts1 = o.time_stamp

10 v = *l

11 ts2 = o.time_stamp

12 i f ((ts2 <= tx.start_time)

13 && (ts1 == ts2)) r e t u r n v

14 e l s e abort();

15

16 W_Write(address l, value v):

17 tx.write_set.add(l, v)

18

19 W_Commit ():

20 f o r e a c h write_record w i n tx.write_set

21 o = get_orec(w.addr)

22 bool success = o.lock.acquire ()

23 i f (! success) abort ();

24 i f (!tx.lock_set.find(o))

25 tx.lock_set.add(o);

26 end_time = 1 + fai(timestamp)

27 Validate ()

28 f o r e a c h write_record w i n tx.write_set

29 o = get_orec(w.addr)

30 n = new history_node(end_time ,

31 w.addr , *w.addr)

32 o.history_list.add_at_head(n)

33 *w.addr = w.value

34 f o r e a c h orec o i n tx.lock_set

35 o.unlock_and_set_ts(end_time)

36 i f (need_gc ()) gc()

37

38 Validate ():

39 f o r e a c h read_record r i n tx.read_set

40 o = get_orec(r.addr)

41 i f (o.ts > tx.start_time ||

42 (o.is_locked ()

43 && lock.owner != tx.id))

44 abort ()

Figure 1. UMV pseudocode for a writer transaction tx.

2 2012/2/15

1 R_Begin_Transaction ():

2 tx_times[tid] = tx.start_time =

timestamp

3

4 R_Read(address l):

5 begin:

6 o = get_orec(l)

7 i f (o.is_locked ()) g o t o begin

8 ts1 = o.time_stamp

9 v = *l

10 i f (o.is_locked ()) g o t o begin

11 ts2 = o.time_stamp

12 i f (ts1 != ts2) g o t o begin

13 i f (ts2 <= tx.start_time)

14 r e t u r n v

15 n = o.history_list.head

16 prev = NULL

17 w h i l e (n != NULL)

18 i f (n.ts <= tx.start_time)

19 break
20 i f (n.addr == l)

21 prev = n

22 n = n.next

23 i f (prev != NULL)

24 r e t u r n prev.value

25 e l s e
26 r e t u r n v

27

28 R_Commit ():

29 tx_times[tid] = maxint

Figure 2. UMV pseudocode for a read-only transaction tx.

On the commit of a writer transaction W , UMV will
perform the operations shown in Fig. 1. These are the same
as in TL2, with the addition of history list insertions and
garbage collection:

1. For each entry in W ’s write set, try to lock the corre-
sponding Orec. If unable to do so, abort.

2. Increase the global timestamp by one, and remember the
result as W ’s end time.

3. Validate W ’s read set. If unsuccessful, abort.

4. For each entry in W ’s write set, push a node containing
the old value onto the history list of the corresponding
Orec. Write the new value back to memory.

5. For each entry in W ’s write set, release the lock on the
corresponding Orec.

6. If significant time has passed since the last check, sum up
per-thread counts of active history nodes. If the value is
too high, call the garbage collector.

On a shared-memory read r of location l, in a read-only
transaction R, UMV will perform the operations shown in
Fig. 2:

1. As in TL2, find the Orec o corresponding to l, and check
its timestamp to see if l may have been modified recently.
If not, return the value of a normal memory read.

2. Otherwise, peruse o’s history list, looking for the last
(oldest) node whose address field is l and whose over-
write time is greater (newer) than R’s start time.

3. If such a node is found, return its value; otherwise, return
the value of the normal memory read.

2.2 Garbage Collection
To avoid unbounded memory growth, history lists must peri-
odically be pruned. This pruning is facilitated by the follow-
ing observation: in the code of Fig. 2, no transaction T will
travel down a history list beyond the first node whose time
is less than or equal to T ’s start time. If tmin is the minimum
start time across all active transactions, we can be sure that
anything with time less than or equal to tmin will never be
needed again, and can safely be reclaimed.

To enable calculation of tmin, we maintain a global ar-
ray tx times, indexed by thread id. Each reader transac-
tion begins by moving the global timestamp into its entry in
tx times. It ends by setting its entry to infinity. The min-
imum value found in a (possibly non-atomic) scan of the
array is then guaranteed to be less than or equal to the start
time of the oldest active reader.

To determine when garbage collection is needed, we
maintain another global array, which records the number of
history nodes allocated by each thread. In addition, a global
counter stores the number of nodes that have been released
by the garbage collector. After a predefined (but tunable)
number of its own writer transaction commits, a thread will
sum up the global array of allocation counts, subtract off the
global release count, and invoke the garbage collector if the
difference exceeds another predefined (but tunable) thresh-
old. While other GC strategies are possible, this has the ad-
vantage of requiring no additional dedicated resources: the
work of collection is spread among the threads, and can oc-
cur in parallel with continued execution in other threads. Ad-
ditional discussion of garbage collection appears in Sec. 4.2.

3. Performance Evaluation
In this section we present preliminary data on the baseline
cost of multiversioning, and the impact on fairness/starva-
tion.

3.1 Baseline Overhead
Fig. 3 assesses the overhead of creating, garbage collect-
ing, and optionally consulting history lists. The experimen-
tal workload is a simple hash table microbenchmark con-
sisting of lookup, insert, and delete operations (all small), in
an 80:10:10 mix. (Half the inserts find the element already
present, and half the deletes find it absent, so 90% of the op-
erations are actually read-only.) The table has 4096 buckets,
and is populated with keys drawn from the range 0..4095.

3 2012/2/15

0.00E+00	

2.00E+06	

4.00E+06	

6.00E+06	

8.00E+06	

1.00E+07	

1.20E+07	

1.40E+07	

1.60E+07	

2	 4	 8	 16	 32	 64	 128	

Th
ro
ug
hp

ut
	 (t
ra
ns
ac
/o

ns
/s
ec
)	

Threads	

LLT	 UMV,	 no	 MV	 read	 UMV	

Figure 3. Throughput of simple hash table benchmark on
the Niagara 2. History lists are created in both UMV vari-
ants, but consulted in only one.

After initial warm-up (not counted in the timings), the table
is typically half full.

The hardware is a two-processor Oracle Niagara 2.
Each processor has 8 in-order, dual-issue cores running at
1.2 GHz, and 8 hardware threads per core (4 threads per
pipeline). Each core has 24KB of L1 D-cache; the cores of a
given processor share 4MB of on-chip L2 cache.

Compared to LLT, UMV reduces overall throughput by
roughly 35% - 40%. Because the transactions are all small,
there is no real benefit to be gained from history lists, and
in fact readers seldom encounter an orec with a too-new
timestamp (hence the near-identical performance with and
without consultation of history lists, marked as ”UMV” and
”UMV, no MV read” respectively in the figure). While the
LLT code is mature and well optimized, the UMV exten-
sions are not; we have hopes that the baseline overhead will
decrease with further work.

We do observe that with 32 threads, UMV outperforms
LLT, which is counterintuitive. After investigation, it appears
that the extra work required to update history lists in writers
has the unexpected consequence (for high thread counts) of
reducing contention with readers, resulting in a more-than-
compensating increase in overall throughput.

3.2 Throughput
To assess the potential benefit of multiversioning, we mod-
ify our hash table microbenchmark to include long-running
“sum” operations, which traverse the entire table and add up
all its elements. Unlike lookup operations, which are small
and fast, sum operations take long enough that they almost
always conflict with concurrent writers, and will starve un-
less something special is done.

Fig. 4 presents results for three different workload mixes:
a write-heavy test (leftmost graph) with 1:19:80 ratios of

sum, lookup and update (insert or delete) operations; a “bal-
anced” test (middle graph) with ratios of 1:49:50; and a read-
heavy test (rightmost graph) with ratios of 1:79:20. (Again,
because half the updaters don’t actually write, the ratios of
read-only transactions to read-write transactions are 60:40,
75:25 and 90:10, respectively).

For each workload mix we compare the throughput
(transactions/sec) of LLT, UMV, and two variants of the sim-
pler NOrec algorithm [6]. Because NOrec serializes transac-
tion write-back using a global lock, it supports a trivial im-
plementation of inevitability (irrevocability). In the “NOrec
inevitable” experiments we use inevitable mode to run the
sum transactions. We also test a (non-general) extension of
LLT (labeled “LLT inevitable”) in which the checker thread
acquires a global lock, which other threads read, forcing
them to abort, if active, and wait to retry.

LLT, UMV, and (basic) NOrec all scale up to 64 threads.
In the read-heavy workload, UMV even obtains a tiny bit
of additional throughput at 128 threads. Significantly, the
serialization of long-running inevitable transactions has a
terrible impact on performance. Though sum operations are
only 1% of the dynamic transaction mix, they take many
times as long to execute, with the result that throughput
scales almost not at all. (As we shall see in the following
subsection, fairness is a different, more complicated matter.)

In all three job mixes, given the fact that every thread
attempts to perform occasional long-running reader transac-
tions, multiversioning leads to dramatically higher overall
throughput. While UMV imposes history-maintenance costs
on update transactions, it ensures that the long-running read-
ers never abort.

3.3 Fairness
As noted in the previous subsection, inevitability can be used
to prevent starvation in long-running readers, but at signifi-
cant cost in scalability. To better assess the impact on star-
vation and, more generally, fairness, we consider a revised
microbenchmark in which all long-running transactions are
performed by a single thread, rather than appearing within
the mix of transactions in every thread. Specifically, we cre-
ate a workload in which all threads but one perform a mix
of small lookup and update transactions, while an additional
“checker” thread repeatedly scans the table for “anomalies”
(in our code, nodes with a value greater than some constant
c). Normal threads execute a tight loop of lookup and update
operations in an 80:20 ratio (90% read-only). The checker
thread attempts a scan once every millisecond.

For all algorithms, we collect two measures of perfor-
mance: the completion rate of check transactions and overall
throughput.

In the checker thread (Fig. 5), the completion rate for LLT
is close to zero: the previous scan has almost never com-
pleted successfully when the next millisecond rolls around,
and the checker starves. The two algorithms with inevitabil-
ity have finish rates above 90% at all thread counts. For

4 2012/2/15

0.0E+00	

5.0E+05	

1.0E+06	

1.5E+06	

2.0E+06	

2.5E+06	

3.0E+06	

3.5E+06	

4.0E+06	

4.5E+06	

1	 2	 4	 8	 16	 32	 64	 128	

Th
ro
ug
hp

ut
	 (t
ra
ns
ac
/o

ns
/s
ec
)	

Threads	

UMV	
LLT	
Norec	
Norec	 Inevitable	
LLT	 Inevitable	

0.0E+00	

1.0E+06	

2.0E+06	

3.0E+06	

4.0E+06	

5.0E+06	

6.0E+06	

1	 2	 4	 8	 16	 32	 64	 128	

Th
ro
ug
hp

ut
	 (t
ra
ns
ac
/o

ns
/s
ec
)	

Threads	

UMV	
LLT	
Norec	
Norec	 Inevitable	
LLT	 Inevitable	

0.0E+00	

1.0E+06	

2.0E+06	

3.0E+06	

4.0E+06	

5.0E+06	

6.0E+06	

7.0E+06	

1	 2	 4	 8	 16	 32	 64	 128	

Th
ro
ug
hp

ut
	 (t
ra
ns
ac
/o

ns
/s
ec
)	

Threads	

UMV	
LLT	
Norec	
Norec	 Inevitable	
LLT	 Inevitable	

Figure 4. Throughput with 1% long-running reader transactions on a 16-core 128-hardware-thread Niagara 2 machine. From
left to right the percentage of update operations is 80%, 50%, and 20%, respectively (40%, 25% and 10% writer transactions).

UMV, the finish rate drops precipitously from 32 to 64
threads. In this case check transactions never abort, so the
source of the problem is different than in LLT. Given the
architecture of the machine, we conjecture that the problem
is a lack of hardware resources. Specifically, the two pro-
cessors provide a total of 32 execution pipelines. With more
than 32 active threads, the checker does not get exclusive
use of a pipeline, and cannot complete in 1ms.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

2	 4	 8	 16	 32	 64	 128	

Lo
ng
	 re

ad
-‐o
nl
y	
tr
an

sa
c0
on

	 fi
ni
sh
	 ra

te
	 (%

)	

Threads	

LLT	

UMV	

LLT	 Inevitable	

Norec	 Inevitable	

Figure 5. Finish rate for long read-only transactions.

In Fig. 6, UMV, LLT, and NOrec all scale well to 16
threads. Beyond this point, LLT and NOrec suffer unac-
ceptable contention, and performance declines. It declines
sooner than in the experiments of the previous subsection
because all the time is being spent in small transactions; the
worker threads have no long-running sum operations to slow
them down. For similar reasons, UMV continues to scale to
32 threads: the extra overhead of history list maintenance
delays the point at which contention becomes unacceptable.
We omit results for plain LLT, and for UMV beyond 32
threads, where the checker is unable to keep up.

Given these results, we consider multiversioning an at-
tractive alternative to inevitability. So long as long-running
reader threads aren’t starved for computational resources

0.00E+00	

2.00E+06	

4.00E+06	

6.00E+06	

8.00E+06	

1.00E+07	

1.20E+07	

1.40E+07	

1.60E+07	

1.80E+07	

2	 4	 8	 16	 32	 64	 128	

Th
ro
ug
hp

ut
	 (t
ra
ns
ac
/o

ns
/s
ec
)	

Threads	

UMV	

LLT	 Inevitable	

Norec	 Inevitable	

Figure 6. Throughput in the presence of long read-only
transactions. In the interest of fairness, we report throughput
data only when long read-only operations have a finish rate
greater than 85%.

(e.g., pipeline slots), multiversioning allows them to com-
plete without aborting, and to co-exist with short transac-
tions that continue to scale to the limits otherwise imposed
by the STM runtime and hardware coherence fabric.

4. Discussion
In this section, we consider two design issues for multi-
versioning STM systems: the identification of long-running
reader transactions and the tuning of garbage collection. In
each case we describe our current solution, outline alterna-
tives, and suggest directions for future work.

4.1 Identifying Long-running Readers
In many STM systems, transactions that may execute in
more than one “mode” must be compiled into multiple
clones, with different read and write barriers (instrumen-
tation) in each. Recent releases of RSTM, however, incor-
porate a dynamic reconfiguration mechanism that accesses
barrier code through an indirection table that is subject to

5 2012/2/15

1 Begin_Transaction ()

2 curr = TM_Read(list→ head)

3 w h i l e (curr != NULL)

4 i f (TM_Read(curr→ id) == thread_id)

break
5 curr = TM_READ(curr→ next)

6 i f (curr != NULL)

7 TM_Write(curr→ val , curr→ val + 1)

8 Commit ()

Figure 7. Static annotation of read-only transactions may
not work. Here whether the transaction is read-only can only
be decided at run time.

dynamic update [16]. In LLT, for example, the initial read
barrier ignores the (empty) write log. The first execution of
a write barrier, if any, replaces both the read and write bar-
riers, so that the former checks the write log (ensuring that
transactions see their own writes) and the latter elides the
change-over code.

For UMV, the RSTM adaptation mechanism allows us to
use the same code path for read-only and read-write trans-
actions: all that differs is the indirection table. In fact, we
can switch between read-only and read-write instrumenta-
tion not only at run time, but even in the middle of a transac-
tion. This capability may be useful for transactions in which
static annotation may not maximize system performance. In
Fig. 7, for example, if we assume that the desired node is
found about half of the time, the other half of the time the
transaction will be read-only. If we choose read-write mode
statically, we are likely to suffer unnecessary aborts in trans-
actions that never really write. If we choose multiversion
mode, we will need to abort and restart whenever a trans-
action that needs to write has read an historic (no longer cur-
rent) value. (Of course, if we ran in read-write mode from
the outset, the transaction would have aborted when it first
encountered the need for an historic read, since read-write
transactions are not permitted to commit in the past.)

It is worth noting that even for read-only transactions,
multiversioning may not always be beneficial. In a small
read-only transaction, if a to-be-read location has changed
since the beginning of the transaction, it may be cheaper to
abort and restart than to traverse history lists on all future
reads. In short, multiversioning makes sense only for trans-
actions that are both read-only and long-running.

In the current version of our code, we provide an ex-
ecutable TM Use MV operation that attempts to switch the
current transaction into multiversion mode. If there has al-
ready been a transactional write, the operation is a no-op.
Using TM Use MV, programmers can choose to keep the con-
ventional TL2-like algorithm for most transactions, and en-
able multiversioned reads only when desired (presumably
for long read-only transactions).

1 Begin_Transaction ()

2 f o r (i n t i = 0; i < len; i++)

3 TM_Read(list[i])

4 i f (i == THRESHOLD)

5 TM_Use_MV ()

6 Commit ()

Figure 8. A transaction that chooses to start multiversioning
dynamically. The TM Use MV function will switch to multi-
version mode iff the transactions is still read-only.

If transactions vary in size, the programmer may choose
to enter multiversion mode only after a read-only transac-
tion reaches a certain size, as suggested in Fig. 8. Here read-
ers will abort only when they are short, and will pay the
overhead of history list searches only when long. Unfortu-
nately, to support the ability of readers to commit in the past
(whether they use that ability or not), writers must create
history list nodes in all cases. As shown in Fig. 3, this has
nontrivial cost.

The principal disadvantage of TM use MV is the need to
invoke it explicitly. In the interest of portability and pro-
gramming simplicity, it may instead be desirable to automate
the selection of multiversion mode. There are many possible
ways to do so—using static analysis or profiling, for exam-
ple. Though we do not employ it in the experiments of Sec-
tion 3, our current code supports an optional on-line strat-
egy: switch to multiversion mode if (a) we attempt to read
a location that has changed since the beginning of the trans-
action; (b) we have performed at least k transactional reads,
for some fixed constant k; and (c) the write log is currently
empty. This strategy requires that we maintain a read count
(an overhead not normally present in the TL2 read barrier),
but it introduces no new branches in the common case: TL2
must already check for out-of-date timestamps.

As observed by Perelman et al. [12], the timestamp exten-
sion of Riegel et al. [8] is orthogonal to multiversioning. In-
stead of (1) aborting or (2) switching to multiversion mode,
there is an additional alternative when we discover that an
about-to-be-read location has changed since the beginning
of the transaction: we can (3) re-read all previous locations
and, if none has changed since the beginning of the trans-
action, update our local timestamp and pretend we started
now. This strategy requires that we maintain a read log, so
we know which locations to re-read. On the plus side, the
on-line strategy for switching to multiversion mode becomes
essentially free: task (b) in the previous paragraph can be
performed by checking the current length of the read log.

4.2 Garbage Collection
Garbage collection is essential for multiversion STM. As de-
scribed in Sec. 2.2, history nodes in UMV can safely be re-
claimed when they represent overwrites that occurred before
the beginning of the oldest running read-only transaction.

6 2012/2/15

0.00E+00	

5.00E+05	

1.00E+06	

1.50E+06	

2.00E+06	

2.50E+06	

3.00E+06	

3.50E+06	

4.00E+06	

4.50E+06	

10K	 100K	 1M	 10M	 100M	

Th
ro
ug
hp

ut
	 (t
ra
ns
ac
/o

ns
/s
ec
)	

Total	 History	 List	 Size	 (Bytes)	

Interval:	 100	 txns	
Interval:	 1000	 txns	
Interval:	 10000	 txns	

Figure 9. Test result for different combinations of GC inter-
val and history lists memory consumption.

The principal remaining question is when to look for such
reclaimable nodes.

Our current strategy, again described in Sec. 2.2, employs
two tunable parameters: GC INTERVAL and GC THRESHOLD.
The run-time system will assess the amount of memory
currently in use for history lists every GC INTERVAL up-
date transaction commits, and will actually peruse the lists
if their total size is greater than GC THRESHOLD. Basically,
GC INTERVAL controls the frequency at which the GC func-
tion is launched, while GC THRESHOLD controls the upper
bound on memory usage. If GC INTERVAL is too small, the
system may incur unnecessary overhead for frequent pe-
rusal of the global array of allocation counts (likely incur-
ring a cache miss on each element); if GC INTERVAL is
too large, peak memory usage may be excessive. Likewise,
if GC THRESHOLD is too small, the system may incur un-
necessary overhead for frequent perusal of history lists; if
GC THRESHOLD is too large, peak memory usage may again
be excessive.

As a simple form of sensitivity analysis, we ran UMV
on our Niagara 2 machine with various combinations of
GC INTERVAL and GC THRESHOLD and measured the through-
put of the hash table microbenchmark described in Sec. 3.2.
Results appear in Fig. 9. Our principal conclusion is that,
at least for this program, the choice of parameters doesn’t
really matter very much. Throughput appears to peak with
less frequent checks of usage (every 10,000 transactions),
and with mid-range bounds on the size of the heap. With
smaller checking intervals, or with unreasonably large heap
sizes (100 MB), performance decreases slightly. (The 8MB
on-chip cache of the Niagara 2 is not quite large enough to
hold the 10MB data set at the right end of the graph.)

Our current results were obtained with the general-
purpose Hoard memory manager [2]. Given that history
nodes are all the same size, we prepended a custom local
allocator. In addition to reducing allocation overhead, local

management allows us to reclaim the entire tail of a history
list in constant time. Nodes are returned to Hoard (and made
available for global use) only when the local pool becomes
unreasonably large.

A potentially interesting subject for future work would
be the reclamation of internal nodes in history lists. Our cur-
rent algorithm removes only those nodes that are older than
the oldest read-only transaction in the system. Some younger
nodes, however, could in principle also be reclaimed. For ex-
ample, if the only two running transactions have timestamps
20 and 30, while in one history list there are nodes with
timestamps 21, 22, 26 and 32, only the nodes with times
21 and 32 have any chance of being used. The others could
safely be reclaimed, though it could be difficult in general to
figure this out efficiently.

5. Conclusions
We have designed and prototyped a multiversion STM sys-
tem (UMV) for C and C++. In comparison to the TL2-
like system on which it is based, it displays up to 5× im-
provement in throughput for workloads that depend on long-
running readers, and up to 2× slowdown for workloads that
do not. With further implementation effort, the overhead of
UMV can probably be reduced, but for small transactions
it will always be higher than the baseline. Topics for fu-
ture work include (1) better automatic mechanisms to choose
when to enter multiversion mode; (2) a new mechanism to
choose (on a global basis), whether writers should maintain
history lists; and (3) an efficient mechanism to garbage col-
lect unneeded internal history nodes.

References
[1] U. Aydonat and T. Abdelrahman. Serializability of

Transactions in Software Transactional Memory. In 3rd ACM
SIGPLAN Workshop on Transactional Computing, Salt Lake
City, UT, Feb. 2008.

[2] E. Berger, K. McKinley, R. Blumofe, and P. Wilson. Hoard:
A Scalable Memory Allocator for Multithreaded
Applications. In Proc. of the 9th Intl. Conf. on Architectural
Support for Programming Languages and Operating
Systems, Cambridge, MA, Nov. 2000.

[3] A. Bieniusa and T. Fuhrmann. Consistency in Hindsight: A
Fully Decentralized STM Algorithm. In Proc. of the 24th
Intl. Parallel and Distributed Processing Symp., Atlanta, GA,
Apr. 2010.

[4] J. Cachopo and A. Rito-Silva. Versioned Boxes as the Basis
for Memory Transactions. In Proc., Workshop on
Synchronization and Concurrency in Object-Oriented
Languages, San Diego, CA, Oct. 2005. In conjunction with
OOPSLA ’05.

[5] J. Cachopo and A. Rito-Silva. Versioned Boxes As the Basis
for Memory Transactions. Science of Computer
Programming, 63(2):172-185, Dec. 2006.

[6] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec:
Streamlining STM by Abolishing Ownership Records. In

7 2012/2/15

Proc. of the 15th ACM Symp. on Principles and Practice of
Parallel Programming, Bangalore, India, Jan. 2010.

[7] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II.
In Proc. of the 20th Intl. Symp. on Distributed Computing,
pages 194-208, Stockholm, Sweden, Sept. 2006.

[8] P. Felber, T. Riegel, and C. Fetzer. Dynamic Performance
Tuning of Word-Based Software Transactional Memory. In
Proc. of the 13th ACM Symp. on Principles and Practice of
Parallel Programming, pages 237-246, Salt Lake City, UT,
Feb. 2008.

[9] I. Keidar and D. Perelman. On Avoiding Spare Aborts in
Transactional Memory. In Proc. of the 21st ACM Symp. on
Parallelism in Algorithms and Architectures, pages 59-68,
Calgary, AB, Canada, Aug. 2009.

[10] J. Napper and L. Alvisi. Lock-Free Serializable Transactions.
Technical Report TR-05-04, Dept. of Computer Sciences,
Univ. of Texas at Austin, Feb. 2005.

[11] D. Perelman, R. Fan, and I. Keidar. On Maintaining Multiple
Versions in STM. In Proc. of the 29th ACM Symp. on
Principles of Distributed Computing, pages 16-25, Zurich,
Switzerland, July 2010.

[12] D. Perelman, A. Byshevsky, O. Litmanovich, and I. Keidar.
SMV: Selective Multi-Versioning STM. In Proc. of the 25th
Intl. Symp. on Distributed Computing, Rome, Italy, Sept.
2011.

[13] Reconfigurable Software Transactional Memory Runtime.
Project web site. code.google.com/p/rstm/.

[14] T. Riegel, P. Felber, and C. Fetzer. A Lazy Snapshot
Algorithm with Eager Validation. In Proc. of the 20th Intl.
Symp. on Distributed Computing, Stockholm, Sweden, Sept.
2006.

[15] T. Riegel, C. Fetzer, and P. Felber. Snapshot Isolation for
Software Transactional Memory. In 1st ACM SIGPLAN
Workshop on Transactional Computing, Ottawa, ON,
Canada, June 2006.

[16] M. F. Spear. Lightweight, Robust Adaptivity for Software
Transactional Memory. In Proc. of the 22nd ACM Symp. on
Parallelism in Algorithms and Architectures, Santorini,
Greece, June 2010.

8 2012/2/15

