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Abstract
Software transactional memory (STM) can lead to scalable imple-
mentations of concurrent programs, as the relative performance of
an application increases with the number of threads that support
it. However, the absolute performance is typically impaired by the
overheads of transaction management and instrumented accesses
to shared memory. This often leads STM-based programs with low
thread counts to perform worse than a sequential, non-instrumented
version of the same application.

In this paper, we propose FASTLANE, a new STM system that
bridges the performance gap between sequential execution and
classical STM algorithms when running on few cores. FASTLANE
seeks to reduce instrumentation costs and thus performance degra-
dation in its target operation range. We introduce a family of algo-
rithms that differentiate between two types of threads: One thread
(the master) is allowed to commit transactions without aborting,
thus with minimal instrumentation and management costs, while
other threads (the helpers) can commit transactions only when they
do not conflict with the master. Helpers thus contribute to the appli-
cation progress without impairing on the performance of the mas-
ter.

We implement FASTLANE within a state-of-the-art STM run-
time and compiler. Multiple code paths are produced for execu-
tion on a single, few, and many cores. Applications can dynami-
cally select a variant at runtime, depending on the number of cores
available for execution. Preliminary evaluation results indicate that
our approach provides promising performance at low thread counts:
FASTLANE almost systematically wins over a classical STM in the
2-4 threads range, and often performs better than sequential execu-
tion of the non-instrumented version of the same application. We
believe that performance can still be improved by additional opti-
mizations and tuning of the FASTLANE algorithms.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms Algorithms, Performance.

Keywords Transactional Memory, Concurrent Programming.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TRANSACT’12 February 26th, 2012, New Orleans, LA, USA.
Copyright c© 2012 ACM . . . $10.00

Number of cores
1 x

Pe
rfo

rm
an

ce
Sl

ow
er

Fa
st

er

Sequential

STM

FastLane

Best performance

Expected gains
from FastLane

Many

Figure 1. Our objective is to develop an algorithm that bridges the
gap between sequential and STM performance at low thread counts.

1. Introduction
Transactional memory (TM) has been receiving much attention
over the last decade as it provides a scalable and easy-to-use ap-
proach to concurrent programming. Developers simply enclose
critical sections within transactions1 that execute speculatively and
abort when conflicting accesses to shared data are detected at run-
time.

Most existing TM implementations are software-only as proces-
sors with dedicated hardware TM (HTM) instructions are not gen-
erally available yet. Therefore, our focus in this paper is on software
TM (STM). STM implementations often exhibit excellent scalabil-
ity with high thread counts [2, 4, 6, 7], but the overheads related to
transaction management and instrumentation of memory accesses2

are clearly visible when executing on few cores: the performance of
a single-treaded non-instrumented application is generally higher
than when using STM on a few cores [1–3, 9]. Only when reaching
a certain threshold of cores (call it x) does STM pay off.

The objective of this work is to bridge the gap between single-
threaded performance of the non-instrumented code and multi-
threaded performance of the STM-based code on x cores. To that
end, we propose a family of novel algorithms, called FASTLANE,
designed to execute as fast as possible on 1 < n ≤ x cores. On that
basis, one can develop applications that can best exploit the number
of cores at their disposal by dynamically determining which algo-
rithm to use: sequential for 1 core, FASTLANE for 2 to x cores,
or STM for more than x cores. Figure 1 depicts schematically the
expected behavior of the three execution strategies and the zone

1 TM-aware compilers typically provide higher-level atomic block language
constructs that are transparently mapped to transactions.
2 Reads and writes to shared memory are replaced by transactional accesses,
which trigger execution of complex operations (conflict detection, mainte-
nance of the read/write sets, etc.) requiring hundreds of additional cycles.



where FASTLANE is expected to boost performance as compared
to the state-of-the-art STM algorithms. Not that

The basic idea of FASTLANE is to have threads operate in one
of two modes. One master thread runs at nearly sequential speed
with only minimal instrumentation, while all other threads execute
speculatively and try to help the master whenever they can. The lat-
ter threads, called helpers, typically run slower than STM threads,
as they should not hamper progress of the master in addition to per-
forming the extra bookkeeping associated with memory accesses.
The roles of master and helper can change dynamically during ex-
ecution of the concurrent application, although we did not use this
functionality as part of our preliminary evaluation.

We propose several variants of the FASTLANE algorithm, which
offer different tradeoffs in terms of complexity and performance.
We expect the efficiency of the variants to depend mainly on the
considered workload, e.g., level of contention, length of transac-
tions, ratio of reads to writes, etc. We also present optimizations
that can improve performance in certain conditions.

We generate multiple code paths for a given application: se-
quential, STM, and FASTLANE (master and helper). The choice
of which variant to use is made when starting the application, de-
pending on the amount of cores available on the target machine.
While it would be conceptually possible to dynamically change the
operating mode while the application is running, this would require
stopping all threads and reconfiguring the runtime. Our current im-
plementation does not support this functionality yet, but it has been
shown in previous work that a dynamic tuning of the STM run-
time system can significantly improve the throughput [10, 12, 15].
Here we focus on streamlining the STM algorithms for low thread
counts.

We have evaluated the performance of the FASTLANE vari-
ants on a number of synthetic and realistic benchmarks from the
STAMP suite [9], and compared them against STM and sequen-
tial executions. Although there is still room for improvement, our
preliminary results show promising performance and we believe to
make a case for having dedicated algorithms for the portion of the
scale where STM loses against sequential execution, that is with
low thread counts.

The rest of this paper is organized as follows. Section 2 de-
scribes the family of FASTLANE algorithms and explains the de-
sign choices that led to the different variants. Section 3 evaluates
the performance of the algorithms on various synthetic and realistic
benchmarks. Section 4 discusses related work and finally Section 5
concludes.

2. FASTLANE Algorithms
The high-level objective of the FASTLANE algorithms is to perform
(1) no worse than sequential execution, and if possible (2) better
when leveraging a few additional threads. To meet the first goal, we
rely on a lightly-instrumented master thread that never aborts and,
hence, should provide performance similar to sequential execution
on a single core. The role of the helper threads is to address the
second objective, i.e., improve performance by committing trans-
actions that do not conflict with those of the master.

All the algorithms presented in this section follow this general
approach, with variations in implementation details and optimiza-
tions. We start by describing the data structures and behavior of the
master thread, before describing the different variants that mainly
differ in the operation of the helper threads in their commit phase.

2.1 Data Structures
The data structures used by the FASTLANE algorithms are sum-
marized in Table 1. They essentially consist of: a shared counter,
cntr , that keeps track of the progress of the master and ensures
mutual exclusion with helpers trying to commit their changes; a

shared array of integers, dirty[] , that protects a set of memory
addresses and stores the value of the counter at the last time one of
these locations was updated; and a FIFO lock, helpers , to serial-
ize commits of helpers.

Variable Description
cntr Counter that tracks progress of the master (and, in some

variants, of the helpers). The value is odd when the master
is in a transaction, even otherwise. This variable is used
to ensure mutual exclusion between the master and the
helpers.

dirty[] Array of monotonically increasing integers. Each memory
address is mapped to one entry in the array (by hashing the
address modulo the size of the array). The entry contains
the value of the counter cntr at the last time the address
was written.

helpers Lock to ensure mutual exclusion when validating transac-
tions and serialize commits of helpers. It is implemented
as a CLH list-based queue lock [8] and provides FIFO
guarantees.

Table 1. Shared data variables used by FASTLANE algorithms.

2.2 Master Thread
The operation of the master thread is described in Algorithm 1.
Upon transaction start, the master increments the counter to an odd
value. As the counter is also used by helpers to obtain exclusive
access to shared memory during their commit phase, the master
must first ensure that no helper is currently committing. This is
achieved by checking if the counter is already odd (line 3). As
other helpers may be waiting for the counter to become even,
we want to give priority to the master. To that end, the master
“reserves” the counter by atomically setting its most significant bit
(line 2), which will result in the reservation by any helper (which
is based on a compare-and-set operation) to fail. In practice, using
the reservation instead of a compare-and-set operation will reduce
the latency of the master. Once the master is guaranteed to have
exclusive access to the counter, it simply increments it to the next
odd value (line 5).

Algorithm 1: Master thread.
function START1

atomic-or (cntr , MSB) // Master request priority access2
while (cntr & 0x01) 6= 0 do // Wait for committing helpers3

wait4

cntr ← (cntr & ¬MSB) + 1 // Only master can write odd cntr5

function READ(addr)6
return *addr // No instrumentation7

function WRITE(addr, val)8
dirty [hash(addr)]← cntr // Mark data as modified9
addr← val // No additional bookkeeping10

function COMMIT11
cntr++ // Only master can write odd cntr12

Instrumentation of memory accesses is minimal on the master
thread. Reads are not instrumented (line 7), while writes are simply
augmented by storing the value of the counter in the corresponding
entry of the dirty[] array (line 9). Finally, upon commit, the
master simply releases the counter by incrementing it to an even
value (line 12). Note that, at this point, only the master can write
the counter and thus we do not need to use an atomic operation.

As one can note from the algorithm, in most cases the master
has very low overhead. Reads are not instrumented and writes go
directly to memory. Two increments and atomic or operation to



Algorithm 2: Helper thread (common functions).
function START1

start← cntr &∼1 & ¬MSB // Get even counter (discard LSB & MSB)2

function READ(addr)3
if CONTAINS(write-set, addr) then // Is address already in write-set?4

return GET(write-set, addr) // Return value previously written5

val← *addr6
if dirty [hash(addr)] > start then // Validate read value7

ABORT8

ADD(read-set, addr) // Add address to read set9
return val10

function WRITE(addr, val)11
if dirty [hash(addr)] > start then // Validate write address12

ABORT13

PUT(write-set, addr, val) // Add to (or update) write set14

function EMITWRITESET // Apply writes to memory15
foreach (addr, val) ∈ write-set do16

dirty [hash(addr)]← cntr17
*addr← val18

function VALIDATE // Validate read and write sets19
foreach addr ∈ read-set ∪ write-set do20

if dirty [hash(addr)] > start then // Concurrent update?21
return false22

return true23

function WAITFOREVENCOUNTER // Wait for counter to become even24
repeat25

c← cntr26
until (c & 0x01) = 027
return c & ¬MSB // Return even counter value (ignore master flag)28

cntr are performed per transaction, but this fixed overhead can be
typically neglected for transactions of a certain duration. Finally,
one update to the dirty[] array is necessary for every write.
Bookkeeping of reads and writes is minimal, as transactions of the
master thread never need to abort.

2.3 Helper Thread
The price to pay for having a lightly instrumented master thread
becomes clear when considering the algorithms of the helpers.
Extra work must be performed to speculatively execute transactions
and try to commit changes without slowing down the master.

The functions common to all FASTLANE helper variants are
shown in Algorithm 2. Upon transaction start, we store the current
value of the counter for subsequent validation purposes, discarding
the most and least significant bits to force the value to be even
(line 2).

When reading a memory location, the helper first checks
whether it has already written that very address. If so, it returns
the previously written address (lines 4–5). It then reads the value
and conservatively checks it the address may have been concur-
rently written, by checking the associated entry of the dirty[]
array; if so, the transaction simply aborts (lines 6–8). Otherwise,
the read can successfully complete: the address is added to the read
set and the previously read value is returned (lines 9–10).

Upon write, we check if the written address has possibly been
updated concurrently, like for reads, and if so, the transaction aborts
(lines 12–13). Otherwise, we simply add the address and the written
value to the write set (line 14), delaying the actual update of the
shared memory to the commit phase.

A few additional functions are used by the different FASTLANE
helper algorithms. EMITWRITESET commits all updates stored in
the write set to shared memory and updates the associated entries
of the dirty[] array with the value of cntr (lines 15–18). VAL-

Algorithm 3: Helper thread (commit variant 1).
function COMMIT11

if EMPTY(write-set) then // Read-only transaction?2
return // Commit immediately3

repeat // Try acquiring counter4
c←WAITFOREVENCOUNTER5

until cas (cntr , c, c+1) // Attempt C&S only after counter seen even6
if ¬VALIDATE then7

atomic-dec (cntr ) // Release counter upon failed validation8
ABORT9

EMITWRITESET // Write updates to memory10
atomic-inc (cntr ) // Release counter11

IDATE verifies if any address stored in the read and write set may
have been concurrently updated, by looking into the dirty[] ar-
ray, and if so conservatively aborts (lines 19–23). Finally, WAIT-
FOREVENCOUNTER waits until the shared counter cntr becomes
even, i.e., appears to be available for acquisition (lines 24–28). The
most significant bit, set by the master as a flag to obtain priority
access to the counter, is discarded. The rationale behind using this
function is that helper threads should not try to modify the counter
in their commit phase with an atomic compare-and-set operation3

unless it appears to be available. Otherwise, the contention on the
cached cntr will significantly degrade performance.

The first variant of the helper’s commit function is shown in
Algorithm 3. The main idea here is to perform the validation of
the read and write sets, resulting in either an abort or a successful
commit, while holding the counter. If the transaction is read-only
(lines 2–3), all memory accesses have already been validated by
the READ function and the transaction can commit immediately.
Otherwise, the helper must ensure mutual exclusion for its commit
phase. To that end, it first waits for the counter to appear available
(i.e., have an even value) before attempting to lock it using a
compare-and-set operation (lines 4–6). Note that the compare-and-
set operation will fail if the master has set the MSB of cntr
to request priority access. Finally, validation is performed while
cntr has an odd value and no other thread (even the master) can
interfere. Upon successful validation, pending updates in the write
set are sent to memory (line 10). Finally, the counter is released by
increasing it to the next even value (line 11). This operation must
be performed atomically because the master might be concurrently
setting the MSB of the counter.

The second variant is shown in Algorithm 4. The main differ-
ence with the previous version is that we try to first validate outside
the critical section, i.e., without setting cntr to an odd value, and
only acquire the counter if validation succeeds. This is expected to
reduce contention with the master, as a transaction that is known to
abort will not compete for the counter. We prevent multiple helpers
from committing concurrently using the helpers FIFO lock in or-
der to avoid interference with the pre-validation from other helpers
(lines 4–18). Before validation, the helper first waits for cntr to
have an even value, i.e., it appears to be available, and stores its
value (line 5). It then proceeds to validation (line 6) and, if suc-
cessful, tries to enter the critical section by setting cntr to the
next odd value (line 10). Once in the critical section, if the value
of the counter has not been modified by another thread since be-
fore validation, then we can commit directly; otherwise, we must

3 The compare-and-set operation takes 3 parameters: an address, an ex-
pected value, and a new value. It atomically checks if the address contains
the expected value and, if so, updates it with the new value and returns
true; otherwise, the memory location is unmodified and the operation re-
turns false.



Algorithm 4: Helper thread (commit variant 2).
function COMMIT21

if EMPTY(write-set) then // Read-only transaction?2
return // Commit immediately3

lock (helpers ) // Only one helper at a time (FIFO lock)4
c←WAITFOREVENCOUNTER5
if ¬VALIDATE then // Pre-validate before acquiring counter6

unlock (helpers ) // Release lock upon failed validation7
ABORT8

t← c+1 // Remember validation time9
while ¬cas (cntr , c, c+1) do // Likely commit: try acquiring counter10

c←WAITFOREVENCOUNTER11

if cntr > t ∧ ¬VALIDATE then // Check that validation still holds12
atomic-dec (cntr ) // Release locks upon failed validation13
unlock (helpers )14
ABORT15

EMITWRITESET // Write updates to memory16
atomic-inc (cntr ) // Release locks17
unlock (helpers )18

re-validate (line 12).4 The writes of pending updates and exit of the
critical section happen as for the previous variant.

Algorithm 5: Helper thread (commit variant 3).
function COMMIT31

if EMPTY(write-set) then // Read-only transaction?2
return // Commit immediately3

lock (helpers ) // Only one helper at a time (FIFO lock)4
repeat5

c←WAITFOREVENCOUNTER6
if ¬VALIDATE then // Pre-validate before acquiring counter7

unlock (helpers ) // Release lock upon failed validation8
ABORT9

until c = cntr ∧ cas (cntr , c, c+1)10
EMITWRITESET // Write updates to memory11
atomic-inc (cntr ) // Release locks12
unlock (helpers )13

The last variant, shown in Algorithm 5, performs validation
entirely outside the critical section so that helpers interfere with the
master only when they are guaranteed not to abort. The algorithm
is adapted from [13]. As for the second variant, we serialize the
commit phases of the helpers by means of a FIFO lock. Validation
takes place in the loop of lines 5 to 10, which terminates only when
validation and entry into the critical section both succeed in a row
without cntr being modified by another thread (line 10). The rest
of the commit phase is similar to the second variant.

2.4 Irrevocability And Switching The Master Role
Transactions can also request at any time during their execution
to become irrevocable. This requires the quiescence of all other
threads. The requesting thread tries to acquire a quiescence lock
that will stop all helper threads from starting new transactions. If
the requesting thread is a helper and the quiescence lock is already
taken, the transaction must abort. Otherwise the thread waits until
no other transaction is active and then acquires the counter for
priority access. Finally, the thread can continue with its irrevocable
operations.

4 We assume in the pseudo-code that the boolean operators and (∧) and
or (∨) use short-circuit evaluation, i.e., the second part of the condition is
only evaluated if the first part does not suffice to determine the value of the
expression.

Certain applications might require to change the role of a thread
between master and helper. By default the first thread that executes
a transaction will become the master. During the execution of the
application any thread can request to become the master. Switching
the roles of a thread is implemented in a quiescence period similar
to irrevocability. First, all worker threads must be stopped and then,
the requesting thread must acquire the counter using a compare-
and-set operation. Finally, it can set itself as the master.

2.5 Optimizations
There are a number of possible optimizations to the algorithms
presented above. We implement and evaluate the first one of these
optimizations, and leave the other two as future work.

First, it is possible to reduce the number and cost of acquisitions
of cntr by the master thread, by letting helpers indicate when they
need cntr to be incremented. The master then only releases cntr
(i.e., increments it to the next even value) and subsequently reac-
quires it when there is at least one such pending request, registered
in a global flag. The flag is set by a helper when (1) it needs to
commit and must enter the critical section, or (2) the helper aborts
because it could not validate. In the latter case, the helper needs the
counter incremented to eventually commit. Indeed, assume that a
shared variable has been written by the master when the value of
the counter is x (odd) without the counter being subsequently incre-
mented. A worker that later reads the same variable will remember
x−1 (even) as start value of the counter and will systematically fail
validation until cntr becomes greater than x (see Algorithm 2,
lines 2 and 21). This optimization is implemented in the second
variant of the helper, which we name 2-opt in the evaluation sec-
tion.

We also observe that, in variants 2 and 3 of the helper thread
commit functions (Algorithms 4 and 5), access to the commit phase
requires acquisition of the helpers lock. Henceforth, at any point
in time, at most two threads (one master and one helper) may
try to simultaneously acquire cntr . It is thus possible to use a
lighter synchronization mechanism that does not require atomic
operations like compare-and-set (but will still incur the cost of
cache invalidation).

Finally, it might be possible to extend the “pre-validation” prin-
ciple further in order to detect doomed transactions as early as pos-
sible. Helper threads could try to validate during read and write, or
before acquiring the helpers lock or waiting for an even counter
in the commit function. Obviously, as for variant 2, this requires re-
validating once in the critical section of the commit function, but
with a higher chance of successful validation.

3. Evaluation
In this section, we evaluate the performance of FASTLANE. We are
specifically interested in showing that (1) it minimizes overhead
for the master thread, (2) it scales for a low number of threads
in a competitive manner against existing STM algorithms under
little contention, and (3) it performs comparably to a sequential
execution without instrumentation under high contention.

We compare FASTLANE against sequential execution and two
variants of a state-of-the-art STM algorithms, TINYSTM [5, 6],
operating either in write-through mode (WT), i.e., direct updates to
memory, or in write-back mode with encounter time locking (ETL),
i.e., buffered updates with eager conflict detection.

For our evaluation, we use both the synthetic intset micro-
benchmarks and realistic applications from the STAMP [9] bench-
mark suite. The intset micro-benchmarks perform randomly queries
and updates on integer sets implemented as red-black tree (RB),
linked list (LL), skip list (SL), and hash set (HS). From the STAMP
benchmark suite, we chose genome, intruder, kmeans, ssca2,
and vacation: genome performs gene sequencing using hash sets
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Figure 2. Intset benchmark: throughput (higher is better).

and string search; intruder emulates a signature-based network
intrusion detection system by matching packets against signatures
stored in self-balancing trees; kmeans clusters a set of partitioned
points in parallel; ssca2 constructs an efficient graph data struc-
ture using adjacency arrays; finally, vacation emulates a travel
reservation system, reading and writing different tables that are
implemented as red-black trees.

Our tests have been carried out on a dual-socket server with two
6-core Intel Xeon Westmere-EP X5650 running 64-bit Linux 3.0.
We compiled all micro-benchmarks with manual transactional in-
strumentation using GCC 4.6 and enabled link-time optimization.
The CPU affinity was configured such that the penalty of moving
data between sockets is as limited as possible. All six cores of a pro-
cessor share the L3 cache. When up to 6 threads are active, which
is the case in our experiments with the intset micro-benchmarks,
only one of the two processors is used.

We consider the following variants of the intset micro-bench-
marks. For RB, we use a working set of 4,096 elements with
update-to-lookup ratios of 5% and 20%; the working set is 1,024
elements for the other variants, with update ratios of 5% and 20%

for LL, 0% (read-only) and 20% for SL, and 0% and 5% for HS.
We present in Figure 2 the throughput (transactions committed per
second computed during a period of 10 seconds of execution), with
the sequential execution (non-TM) throughput as a baseline and
represented by a horizontal dashed line. Figures 3, 4, 5, and 6 de-
tail the numbers of commits and aborts for a subset of the intset
micro-benchmarks, representative of various conditions for con-
tention and transaction length. We distinguish between the commits
of the master, and the commits and aborts of the helper threads.
When using more than one helper, we present the average number
of commits, respectively aborts, over the execution period for all
helpers. Our last set of experiments, presented in Figure 7, evalu-
ate the throughput of STAMP applications. We selected all bench-
marks that were compatible with FASTLANE. The benchmark were
configured accordingly to the documentation with high contention
parameters.

3.1 Single Thread Overhead
Our main goal is to reduce the overhead introduced by synchroniza-
tion for low thread counts. The single-threaded throughput is usu-
ally the base that can give subsequent threads a head start. There-
fore, we first focus on the single threaded overhead, that is, when
only processing transactions on the master thread. The operation
of the master is lightweight: it only needs to increment the counter
upon beginning and committing a transaction. Loads have no in-
strumentation at all, while writes only require an additional update
to the dirty[] array.

On the other end of the spectrum, state-of-the-art STM algo-
rithms require non-trivial algorithms to be executed for every trans-
actional operation. They must typically copy the current CPU con-
text at transaction begin to support restart upon abort, keep track of
read and write sets upon memory accesses, and perform validation
and memory copy operations upon commit. FASTLANE’s objective
is to streamline these costs for the master thread.

Figures 2 and 7 show that the master can indeed achieve single-
threaded throughput close to that of sequential execution. For intset,
the performance is very close to sequential for LL, SL, genome,
intruder, and ssca2. While still better than other STM, the per-
formance for RB and HS is not as close to sequential: this is primar-
ily due to the fact that these benchmarks have small transactions,
hence the cost associated with the management of cntr in the be-
gin and commit phases dominates.

Note that the single threaded overhead could be further reduced.
FASTLANE provides a generic interface that checks at each invoca-
tion of the begin, read, write, and commit functions if it is currently
a master or helper thread. In the intset benchmarks LL, SL, and HS
in Figure 2, we manually differentiated the code paths of the mas-
ter and helpers at the application level, imitating efficient compiler-
generated code. The RB benchmark, which has more complicated
application logic, uses generic variants of the transactional opera-
tions that execute additional branches at runtime, hence incurring
overheads that could be avoided with smarter compiler support.
These compiler-side optimizations are part of our ongoing work.

3.2 Scalability for Low Thread Counts
We now want to show that the helper threads allow the FASTLANE
variants to scale for low thread counts. Our design streamlines the
master for minimal overhead. Helpers have the overhead of book-
keeping the transactional metadata and validation at commit time.
This results in a very unbalanced workload distribution between
the two types of threads because the master is able to process
transactions much faster than the workers. Therefore we adapted
the STAMP benchmarks with a partitioning-based dynamic work
balancing that introduces only very little overhead. For the intset
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Figure 3. Intset benchmark: commits and abort rates for the master and helpers (HS, 1024 elements, no updates).
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Figure 4. Intset benchmark: commits and abort rates for the master and helpers (LL, 1024 elements, 5% updates).
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Figure 5. Intset benchmark: commits and abort rates for the master and helpers (RB, 4096 elements, 5% updates).
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Figure 6. Intset benchmark: commits and abort rates for the master and helpers (SL, 1024 elements, 20% updates).
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micro-benchmarks, each thread executes in a loop at its own speed
for a given duration.

Overall, FASTLANE scales well for low thread counts with
moderate contention, as shown in Figures 2 and 7. The minimal
overhead of the master thread gives it a head start and the helpers
contribute their share when the number of threads increases (see
Figures 3, 4, 5 and 6). The abort rates are very low. The sequen-
tial execution is often outperformed with just two threads. Depend-
ing on the contention of the workload, TINYSTM wins over the
other variants when more threads are added and the underlying al-
gorithms exploit sufficient parallelism.

We observe that FASTLANE variant 3 does not scale well be-
cause the helpers cannot contribute to the throughput. This is due
to the fact that almost all time is spent processing transactions in the
intset benchmarks. Helpers need a realistic chance to validate out-
side the critical section (when holding helpers and cntr ), oth-
erwise they simply cannot contribute to the overall performance.
This is not the case in the considered micro-benchmarks as the
master keeps updating cntr at a high frequency and, hence, the
value of the counter almost always changes between validation and
the compare-and-set operation at the helpers. Therefore, there is a
trade-off between possibly slowing down the master and creating
a bottleneck for the helpers. Note that once the helper commits, it
might perform a number of read-only transactions without interfer-
ence with the master depending on the update rate, a share of work
that would be lost if the helper is constantly blocked.

The HS benchmark has very short transaction, thus, the fixed
transaction costs upon begin and commit have an higher impact.
The plots for 0% update in Figure 2 show that the contention on
the counter has a negative impact on scalability. The reason is
cache contention, as un update of the counter by the master will
invalidate the associated cache line in the cores executing the helper
algorithm. Figure 3 compares the commits of the master vs. helper
and shows the slowdown of the master. The increasing number of
helpers prevents the master from contributing as much to the overall
throughput.

Finally, Figures 2 and 3 show that the optimized variant 2 can
keep the lead when adding more helper threads. The master thread
does not increment the counter unless it is explicitly requested by
a helper. For 0% updates, the counter is never incremented and all
other variants are outperformed.

3.3 Small Penalty on Contention
High contention workloads typically yield bad scaling with state-
of-the-art STMs because of high abort rates. With FASTLANE, we
want to minimize the influence of helper threads on the master
thread in order to keep the throughput close to the level of the single
threaded execution. The helpers should only have an positive im-
pact on the throughput when they are able to successfully commit.
Variant 3 has the benefit of performing all validation without incre-
menting the counter itself, and never aborts once it does increment
the counter. We expected to see a similar behavior with variant 2,
but the single pre-validation is not sufficient to limit the impact on
the master thread (see Figures 3, 4, 5 and 6).

4. Related Work
A variety of efficient software transactional memory implementa-
tions have been proposed in the last few years [2, 4, 6, 7, 14]. The
main focus was on exploiting the available disjoint access paral-
lelism with high thread counts. The best performing algorithms typ-
ically use revocable locks and time-based validation. Designated
STM runtime systems [10–12, 15] reduce the bookkeeping over-
head when no contention is present.

We are only aware of a few existing STM designs that target
small thread counts. Transactional mutex locks (TML) [3] use a

versioned reader-writer lock: read-only transactions can concur-
rently execute and commit but, as soon as a transaction wants to
write, it must acquire the lock, which will lead to an abort of all
other active transactions. While no other transaction can execute
concurrently when an update transaction is active, the benefit is a
minimal instrumentation overhead. Transactions only have to save
the context upon start to support retries. No write or undo logs are
needed, and transactional loads only have to check the status of the
versioned reader-writer lock. The scalability with write-dominated
workloads is obviously limited by this approach.

NOREC [4] extends the idea of TML with value-based valida-
tion to deal with concurrent updates. This allows read transactions
to execute concurrently with update transactions. While ownership
records are still omitted, maintenance of a read-set adds overhead
compared to sequential execution of the code.

One should finally note that, in our previous work on the RO-
BUSTM [16] transactional memory, we already used the atomic or
to break compare-and-set loops in order to allow a privileged thread
to steal locks from other transactions. Using this mechanism, we
implemented a practically wait-free STM algorithm that tolerates
crashes and non-terminating transactions.

5. Conclusion
Until HTM becomes generally available in multi-core processors,
STM will continue to be the dominant form of transactional mem-
ory. In this paper, we have addressed one of the main drawbacks of
STM: its limited performance at low thread counts, as compared to
the execution of the original application on a single core without
the overheads of TM.

We have proposed a family of new STM algorithms, FAST-
LANE, designed to perform best at low thread counts, where clas-
sical STM implementations are slower than sequential execution—
typically between 2 and 4 threads. FASTLANE relies on a single
master thread with light instrumentation that never aborts, and one
or more helper threads that perform additional work as they try to
commit their transactions without hampering the progress of the
master. We have presented several variants that differ mainly in the
commit function of the helper threads.

Our next step will be an extension of the STM runtime and com-
piler support. The DTMC transactional C/C++ compiler already
generates binaries with multiple code paths corresponding to dif-
ferent algorithms tailored for various numbers of core: sequential
execution on a single core, FASTLANE on few cores, STM on many
cores. The dynamic choice of the code path to execute is then driven
by the load or number of available cores on the target machine. Re-
sults from our preliminary evaluation show promising results, but
also tends to indicate that there is still room for improvement.
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