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Abstract
The designs of software transactional memory (STM) algorithms to
date have been optimistic: transactions that run into inconsistencies
abort and retry. The common view is that this optimistic approach
gives significant performance benefits, and yet we know that it also
results in complex programming, limitations on what can be exe-
cuted within a transaction, and difficult debugging. This is a bur-
den that does not exist in the pessimistic lock-based programming
model transactions are meant to replace.

This paper introduces the first STM system that is fully pes-
simistic, that is, each and every transaction, whether reading or
writing, is executed once and never aborts. The benefits of this fully
pessimistic STM are that programming with it is logically as simple
as with locks, allowing I/O and system calls within a transaction,
and making the debugging process significantly simpler. Perhaps
surprisingly, we show that on many standard STM benchmarks, our
fully pessimistic STM system, which also offers full transactional
privatization, delivers performance and scalability that are compa-
rable to that of the most efficient optimistic non-privatizing STM
systems. This puts in question our commonly accepted understand-
ing of the tradeoffs between pessimism and performance.

1. Introduction
Transactional memory systems are one of the leading approaches
to overcoming the difficulties of lock-based programming, with
an expected debut in GCC 4.7 of a commercial quality software
transactional memory (STM) system. All STM algorithms (see
[10]) to date, including the TinySTM algorithm of Felber, Fetzer,
and Reigel [9] and the TL2 STM of Dice, Shalev, and Shavit [6],
are optimistic or partially optimistic: some transactions can run
into inconsistencies and be forced to abort and retry. The common
view is that this optimistic approach gives significant performance
benefits when compared to pessimistic transactions, and there has
been some lower bound work to support this claim [4].

The use of optimistic transactions however, introduces various
limitations into the programming model, ones that do not exist in
the lock-based algorithms they set out to replace. Because a trans-
action can fail and will need to be retried, one is restricted when
performing external system based operations such as I/O calls; if
you read from the disk and fail, what do you do with the data? Sim-
ilarly, special STM friendly versions of operations such as malloc
and free must be designed if we wish them to be executed within

[Copyright notice will appear here once ’preprint’ option is removed.]

a transaction. This is because they need to be ready for the possi-
bility of an abort of the transaction immediately after allocating or
freeing. This limitation complicates programming even further if
a transaction calls code from other sources, code that may contain
I/O or malloc operations written by other programmers. The possi-
bility of aborts also complicates debugging. Debuggers go through
the code step by step. If at any point the code can be rolled back (as
a result of an abort) depending on the parallel execution, the sim-
ple step by step logic cannot be applied. The bug can be revealed
only when some specific “back jumps” are performed. Therefore,
simply debugging in the usual way will not help.

There have been several attempts to rectify this situation. Welc
et al. [21] introduced the notion of irrevocable transactions. They
provided the first STM system providing pessimistic transactions
that can be executed concurrently with optimistic ones. Their sys-
tem can execute one pessimistic transaction at a time, and use this
pessimistic transaction to perform I/O or other externally dependent
operations. This system was the first to answer the need to execute
systems calls within transactions, but does not relieve the program-
mer from the having to plan and be aware of which operations to
run within the specialized pessimistic transaction. It still leaves the
same limitations on all other optimistic transactions, even if they
are read-only transactions.

Perelman et al. [14] show a partially pessimistic STM that can
support read-only transactions that do not abort. Their STM does
so by keeping multiple versions of the transactions’ view during its
execution. Though theoretically interesting, the overhead of main-
taining and checking these multiple versions makes this STM im-
practical. Attiya and Hillel [3] presented the first partially pes-
simistic STM that provides read-only transactions without multiple
versions. However, their solution requires acquiring a read-lock for
every location being read. This overhead, again, is too high to make
this algorithm practical when compared to state-of-the-art STMs
such as TinySTM and TL2, in which reading a location does not
require any form of locking, or for that matter, any form of writing
to shared memory.

In this paper we introduce the first STM system that is fully
pessimistic: each and every transaction, whether reading or writ-
ing, is executed once and never aborts. The benefits of this fully
pessimistic STM are that unlike all previous optimistic or partly
pessimistic STMs, in which the programmer has to worry about the
effects of failed and repeated code, here “what you write is what
you get.” It allows actions like I/O and system calls to be used
freely within transactions, relieves the programer of the need to
understand the internals of imported libraries and imported code,
and makes the task of debugging much simpler. We believe this
makes the job of transactifying legacy sequential or lock-based
code (a major undertaking of today’s concurrent programmers) sig-
nificantly simpler.

But what is the implementation overhead of this fully pes-
simistic STM? Our algorithm executes write transactions sequen-
tially in a manner similar to [21], yet allows concurrent read-only
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transactions without using read-locks or multiple versions as in
[3, 14]. We do so by using a TL2/LSA [6, 15] style time-stamping
scheme together with a new variation on the quiescence array
mechanism of Matveev and Shavit [1]. The sequential execution
of the pessimistic write transactions is a drawback relative to stan-
dard TL2, but also has some helpful performance advantages. The
most important one is that our STM transactions do not acquire or
release locks using relatively expensive CAS operations. Because
there is only one write transaction at a time, we notice that one can
update locations and their timestamps using a sequence of simple
stores followed by a single memory barrier. Moreover, one does not
need read-location logging and revalidation or any bookkeeping for
rollback in the case of aborts. Our use of the Matveev and Shavit
quiescence mechanism is a variation on the mechanism, which was
originally used to provide privatization of transactions, in order to
allow writes to track concurrent read-only transactions with little
overhead. The writes avoid writing if it can interrupt reads, and
thus allows reads to execute without aborting. A side benefit of this
mechanism is that our new fully pessimistic STM also provides
implicit privatization with very little overhead (Achieving implicit
privatization efficiently in an STM is not an easy task and has been
the subject of a flurry of recent research [1, 2, 11–13, 18, 19]).

Perhaps surprisingly, our fully pessimistic and privatizing STM
provides performance comparable to that of the fully optimistic
non-privatizing state-of-the-art TL2 algorithm on a wide variety of
accepted STAMP benchmarks [5] and red-black trees. How could
this be? As we show, the key observation is that in many real-world
applications, transactions are not executed immediately one after
the other. Rather, there is typically a gap of time, between transac-
tional calls, in which applications perform useful non-transactional
work. Our STM makes use of this time to complete sequentially
executing non-aborting write transactions and to perform the noti-
fication and synchronization operations that would in other STMs
fall directly in the computation’s critical path.

Obviously, there are cases where the gaps are small, or worst
yet, that the application has very high levels of transactional writes
(such as in STAMP’s Labyrinth benchmark). In such cases our
above implementation will deliver poor performance. To overcome
some of this problem, we propose to combine pessimistic STMs
with lightweight transactional threads [8] which we will call fibers
(we believe this is a name used historically for such lightweight
user-level threads). We will allow each hardware thread to run
multiple transactions as fibers. The fibers monitor the progress
of write transactions and whenever a write transaction is queued,
waiting to be executed, the fiber will switch to another fiber to
possibly allow a read transaction to execute concurrently on the
same hardware thread. As we show in the context of a red-black tree
benchmark (unfortunately introducing fibering into STAMP is an
undertaking beyond the scope of this paper), this approach provides
a significant enhancement of our STM’s performance under high
levels of transactional writes to the tree.

In summary, this paper is not claiming that we should replace
optimistic STMs with pessimistic ones. We are however providing
the first ever fully pessimistic privatizing STM system, and argu-
ing that there are many cases (and even more cases when com-
bined with fibering) in which the pessimistic STM’s significantly
enhanced user experience is provided with no performance penalty.
This brings to question our accepted ideas about the performance
characteristics of STMs, and down the road may help to improve
their design.

2. Fully Pessimistic Transactions
Our design of an STM in which all transactions are pessimistic, that
is, do not abort, will build on prior work of Welc et al. [21], which
shows how to allow one pessimistic write transaction (the authors

call it irrevocable) to execute in parallel with multiple optimistic
ones. A typical transaction must read and write to multiple loca-
tions. If a transaction involves only reads we call it a read transac-
tion, and otherwise it is a write transaction. The pessimistic trans-
action in [21] uses special mark-bits to prevent other optimistic
transactions from writing to locations the pessimistic transaction
is reading, and has the pessimistic transaction wait for the release
of any locks it encounters on the locations it is writing. Because of
this need to wait, one can only run a single irrevocable write trans-
action at a time; otherwise we would run into a situation in which
we either have deadlock (both transactions waiting for each other
to release locks) or some transaction will have to abort. In fact, this
deadlock situation is unavoidable, and one cannot in general run
more than a single pessimistic write transaction at a time in any
STM system. Our algorithm here will extend the idea in Welc et al.
[21] of running only one pessimistic write transaction at a time, but
unlike Welc et. al, we will support multiple concurrently execut-
ing pessimistic read transactions. The STM will also provide full
privatization [20].

The sequential execution of the pessimistic write transactions is
a drawback relative to standard STM’s such as TL2, but also has
some advantages. One key idea in the new algorithm is that we can
get away with transactions not acquiring or releasing locks (which
requires relatively expensive CAS operations, and is a major source
of overhead in traditional STMs). Because there is only one write
transaction at a time, we show how one can write to locations and
update their timestamps using a sequence of simple stores followed
by a single memory barrier. Moreover, we show that one does not
need read-location logging and revalidation, or bookkeeping for
aborts. We will elaborate on this below.

Another key idea is to efficiently pause reads and writes if they
might affect each other, and by doing so save on the overhead of
read transactions’ operations having to be visible. We do so by re-
vising the quiescence mechanism of Matveev and Shavit [1], an al-
gorithmic technique that was originally developed to provide trans-
actional privatization. This mechanism allows read transactions to
complete without aborting, and to do so with very low overhead.

2.1 The New Fully Pessimistic STM
We now show in detail how the two mechanisms can be combined
to create our new fully pessimistic STM system.

Our STM will execute all write transactions one after another.
Writes will be stored to a local write-set and written to the shared
memory in the commit phase. Read transactions will be executed
in parallel with writes and other read transactions. The idea at the
core of the implementation is to prevent any write transaction from
writing on locations which are currently being read by some con-
current read transaction. New values to be written will be stored
in a local write-set which is not written until the commit. In the
commit phase, the write-locations will be blocked from being read
by any new read transactions, and a quiescence pass will be exe-
cuted to make sure the write-locations are not being accessed by
concurrent readers. Only then will the writer be allowed to write
the locations from the write-set to the memory. As we can prove,
this combination of blocking and delaying will guarantee that all
read and write transactions are internally and externally consistent
(i.e. serializable).

The first element of our solution will be to use a version-
number-based consistency mechanism in the style of the TL2 algo-
rithm of Dice, Shalev, and Shavit [6]. The range of shared memory
is divided to stripes, and with each we associate a local version-
number (in a similar way to [6, 7, 9]). For example, if the shared
memory range is 220 bytes and a stripe is defined to be 28 bytes,
then there will be a total of 212 stripes and associated version-
numbers.
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Figure 1. Global variables of the algorithm

In addition, there will be a shared global version number (as
introduced by [6, 16]), a 64bit unsigned integer initialized to 1. For
any transaction we will denote the set of the memory locations read
as the read-set and the set of the locations written as the write-set.
The key idea will be, as in TL2, to determine a location’s validity
by checking that its version number relative to the global version
number. The actual test however will differ from the one in TL2.

Our quiescence mechanism will be a variation of the mechanism
we used in [1]. The quiescence mechanism uses a global activity
array. For now lets assume that this array has an entry per thread
in the system, indexed by its ID. We will later show how to reduce
the array size to be a function of the number of hardware cores.
The entry for a specific thread indicates if the thread is currently
executing a transaction. It consists of a tx version field, a 64bit
value that is initialized to current global version upon transaction
start (default value is the maximum 64bit value 0xFF..FF).

Figure 1 depicts the global variables: the division of the shared
memory to stripes with associated stripes’ versions, the global
version number used for consistency, and the activity array used
for inter-thread coordination.

The synchronization of the read and write transactions is per-
formed by blocking the read operations and delaying the write of
the write-set locations. The global version number is used to im-
plement this blocking and delaying. Every transaction, upon start-
ing, will read the current global version number to the tx version
variable associated with the transaction’s thread. A read operation
within a transaction will block when the tx version is equal to the
read location’s version number. The blocking is implemented by a
Wait for version progress procedure that reads the global version
repeatedly until it is not equal to the transaction’s tx version. On
loop exit, the transaction’s tx version is updated to the new global
version read.

When the system starts, the stripes’ version numbers are ini-
tialized to 0 and the global version number is initialized to 1. The
tricky part of the algorithm is the synchronization between the com-
mit phase of the write transaction and the concurrent transactions’
read operations. The commit phase of the write transaction has to
accomplish two main tasks:

1. Memory update barrier: write the write-set locations to mem-
ory so that no abort occurs.

2. Signal next writer: allow the next write transaction to execute.

First, we explain the implementation of (1) and then explain
how to implement (2).

The memory update barrier of the commit is composed of
the following steps: (1) set every write-set location’s version to

tx version + 1, (2) add 1 to the global version, (3) quiescence, (4)
write of the write-set to memory, and (5) add 1 to the global version.

Assume we have a write transaction that arrived at the com-
mit phase. It begins by updating the write-set locations’ version
numbers to the tx version + 1 and then increments the global ver-
sion number by 1. Any new concurrent transactions started after
the global version increment step will be blocked from reading a
write location that is in the write-set of the concurrently committing
write transaction. This is because the write location’s version will
be equal to the concurrent transaction’s tx version. Next, the quies-
cence will be performed by the committing write transaction to en-
sure that all concurrently executing transactions that may read the
write-set locations have finished: the activity array will be scanned
for entries having a tx version less than current global version. The
writing transaction will spin on every entry for which that condition
is true and until it becomes false. Once it completes this quiescing
phase, no other concurrent transactions can read the write-set loca-
tions and therefore the transaction can write them safely to mem-
ory. Finally, the actual writes to memory are performed and the
global version number is incremented again to release the possible
blocked concurrent transactions (ones spinning on locations in the
write set).

After a transaction read operation is blocked and released, it
cannot be blocked again. In other words, the Wait for version
progress loop can be initiated only once. This is because the block-
ing can be performed only for transactions that were started during
the commit phase of the concurrent writer. Therefore, if a trans-
action was blocked and released, then the concurrent writer must
have committed. The next write transaction cannot block transac-
tions that started before it. This means that the read operations’
stripe version validations are not required after a blocking was ex-
ecuted once. As a result, a local variable progress is seen is used
within the transaction to indicate that a Wait for version progress
has been already executed. Initially, it is set to FALSE and upon
completion of the blocking it is set to TRUE.

As we noted, we assume for now that a thread with id th id
is associated with activity array[th id] entry. A read transaction
executed by such a thread will be implemented in the following
way:

Upon read transaction start:

1. Read global version: Read the global version to tx version
variable in the activity array[th id].

2. Execute a memory fence.

For every read location of the read transaction:

1. Check progress indication: Tests if the progress is seen is
TRUE. If so, jump to the last step.

2. Check location version: Tests if the location’s version number
is not equal to the tx version. If so, jump to the last step.

3. Wait for version progress: Execute the Wait for version
progress procedure that spins until the global version it is
not equal to the tx version. Set the transaction local variable
progress is seen to TRUE.

4. Read the memory: Read the memory location value and
return.

Upon commit of the read transaction:

1. Set inactivity: Set the tx version variable in the activity array[th id]
to the maximum value.

We now introduce the Signal next writer component of the
commit. In [21] the write transactions coordination is implemented
by a global writer lock. Every write transaction tries to acquire
this global lock on start and release it on finish. This lock acquire
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and release sequences can cause high cache coherence traffic. To
avoid this, we implement a different scheme using a combination
of a writer lock and a simple “pass the baton” style signaling
mechanism in the activity array.

We add to each entry of the activity array a writer waiting
boolean field. Upon start of a write transaction, the writer waiting
field in the activity array entry will be set to TRUE and then the
global writer lock will be checked to see if it is taken. If free, a
lock will attempt to acquire the lock. Otherwise, the lock is already
taken, and the write transaction will wait for a signal by spinning
on its writer waiting field until it becomes FALSE. Upon commit
of currently executing write transaction, the activity array will be
scanned for entries with writer waiting set to TRUE. These entries
represent the concurrent write transactions which are waiting for
a signal. One writer will be chosen and signaled by setting the
writer’s entry writer waiting flag to FALSE. If no such entries
found, the writer lock will be released.

In the common case, there is some degree of concurrency be-
tween the write transactions. Therefore, usually during the commit
of a write transaction there will be some entry in the activity ar-
ray with writer waiting set to TRUE. As a result, the global lock
acquire and release operations will be infrequent and most of the
time write transactions will signal each other, invalidating only one
cache line in a specific core.

When a write transaction signals the next writer to execute,
it must choose between currently waiting writers. A policy must
be defined to avoid starvation of some thread. Suppose currently
committing writer has a thread id of writer th id. To make the
system fair we scan the activity array for an entry with a waiting
writer starting from writer th id + 1 to the array end and then from
0 to writer th id (not included). In this way every waiting writer
will be signaled after at most a number of time proportional to the
array size.

A simple way to add the signaling is by executing it after the
commit is done. This will make the read operations of the writer
very simple - just look at the local write-set and if the location
is not there read from the memory. In general we want to signal
the next writer as soon as possible because of the writers serial
bottleneck. The earliest point for signal execution is after the write-
set locations are blocked for new transactions - after first global
version increment. In this point the next write transaction can start
it’s execution. If it will try to read a blocked location - it will wait
until the currently executing commit is finished. When it will arrive
to it’s own commit a check will be performed for a concurrent
commit still running and it will wait for it to finish. All this waitings
will be implemented using the same Wait for version progress
procedure described before.

A write transaction executed by thread with id th id will be
implemented in the following way:

Upon start of the write transaction:

1. Set writer activity: Set the thread’s entry writer waiting in the
activity array[th id] to TRUE.

2. Execute a memory fence
3. Writer Gate 1 (Common Case) - Check for signal: Test if

writer waiting has become FALSE. If so continue to the Read
global version step.

4. Writer Gate 2 (Rare Case) - Check for writer lock: Test if
writer lock is free. If so, try to acquire it with a CAS. If success,
set writer waiting to FALSE and continue to the Read global
version step.

5. Go to check signal step: Jump back to step 2.

6. Read global version: Read the global version to tx version
variable in the activity array[th id]

7. Execute a memory fence

For every read location of the write transaction:

1. Check local write-buffer: Check if the read location is in the
write-buffer already. If so, then return the value stored there.

2. Check progress indication: Test if the progress is seen is
TRUE. If so, jump to the last step.

3. Check location version: Test if the location’s version number
is not equal to the tx version. If so, jump to the last step.

4. Wait for version progress: Execute the Wait for version
progress procedure. Then set the transaction local variable
progress is seen to TRUE.

5. Read the memory: Read the memory location value and
return.

For every write location of the write transaction:

1. Update the local write-buffer: Write the pair (address, value)
to the local write-buffer.

Upon commit of the write transaction:

1. Sync with the concurrent writer: Check if tx version is even.
If so, execute the Wait for version progress procedure. (This
step is necessary to ensure that only one write transaction per-
forms the commit at a time. Also note, that on loop exit the
tx version will be updated to the current global version)

2. Update the write-set versions: Write tx version + 1 to every
write-location version in the write-set.

3. First global version increment: Increment the global version
by 1 and update the tx version to the new global version num-
ber. (this effectively locks readers from reading write-set loca-
tions).

4. Execute a memory fence
5. Signal next writer: Scan the activity array for an entry

with writer waiting equal to TRUE. If found, set the entry’s
writer waiting to FALSE. Otherwise, release the writer lock.
To prevent starvation the scan is performed from th id + 1 to
the end of the activity array and then from 0 to the thread id
+ 1. (The thread ids are not operating system ids; They are
internal ids used to index directly the activity array).

6. Quiescence: Scan the activity array for entries with tx version
less than current global version (or tx version). For every such
entry spin until this condition becomes false. (The meaning of
this is to wait for all transactions that have been started before
the First global version increment step of this commit phase.
Transactions started after this step will be blocked upon trying
to read the write locations of this commit).

7. Write the write-set: Write all the write-locations to the mem-
ory.

8. Execute a memory fence
9. Second global version increment: Increment the global ver-

sion by 1 and update the tx version to the new global version
number.

To illustrate the synchronization between the write and read
transactions, Figure 2 shows 3 stages of a concurrent execution.
In stage 1, there is read transaction 1 and write transaction 1. The
read transaction 1 started before the writer so it proceeds without
being blocked. The writer reads the stripes and writes to the local
write-set. In stage 2, in order for the write transaction to commit,
the write-set locations versions (stripes 1 and 2) are updated to
tx version + 1= 24 and then the first global version increment is
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Figure 2. Three different stages of concurrent execution between read and write transactions are shown.

performed (to 24) (step 7 and 8). This blocks the write locations
from being read by new transactions started after step 8. Therefore,
a newly started read transaction 2 is blocked when it tries to read
stripe 2. The write transaction 1 continues to the quiescence (step
9) and finds read transaction 1 with a tx version that is less than the
current global version. The writer waits for this reader because it
started before the blocking step of the commit (step 8). When the
read transaction 1 finishes, the quiescence takes place and the writer
performs the writing to memory in stage 3. Then the global version
is incremented for a second time and the spinning read transaction
2 is unblocked. Transaction 2 sees that the global version has
advanced and updates its progress is seen flag to TRUE. From this
point it is not required to validate versions because it cannot be
blocked any more.

The key to this algorithm’s performance is that the above pes-
simistic transaction implementation is, in a weird way, more effi-
cient than standard optimistic one as in, say, TL2 or TinySTM; all
of the above operations, and in particular operations in the commit-
phase, do not acquire locks using expensive hardware CAS oper-
ations. Instead, the “locking” of all the write-set locations is done
by updating their version numbers and incrementing the global ver-
sion by 1. All are simple hardware store operations, and the global
version increment is followed by a single memory fence. More-
over, because transactions are sequential, one does not need read-
location logging and revalidation, saving a lot of booking overhead.
Finally, the relevant bookkeeping for aborts and back jump tricks
are not required.

For lack of space we do not prove the new STM correctness
and progress guarantees. Informally, the commits can be executed
one at a time, so the quiescence steps can be executed, also, one
at a time. The commit’s first global version increment step splits
all of the transactions executed to two disjoint groups; the (1)
ones started before this step, and the (2) ones started after it.
The quiescence step waits for the transactions of the first group,
while the transactions of the second will be blocked by reading
the current write transaction’s write-set location. Therefore, after
quiescence complete, the write-set locations are “sterilized” from
possible concurrent reads, and the write-set can be flushed to the
shared memory safely. After the write is done, the first global
version increment step unblocks the (possibly blocked) transactions
from the second group.

2.2 Privatization
One of the great benefits of the new fully pessimistic algorithm
is that we get implicit privatization almost for free. A common
and useful programming pattern is to isolate a memory segment
accessed by some thread, with the intent of making it inaccessible
to other threads. This “privatizes” the memory segment, allowing

the owner access to it without having to use the costly transactional
protocol. (for example, a transaction could unlink a node from a
transactionally maintained concurrent list in order to operate on it
more efficiently in a non-transactional manner.)

Why is guaranteeing implicit privatization such a problem?
Consider a transaction that has just privatized a memory segment.
Even though the segment cannot be accessed by any other transac-
tion (executing on the same or other processor) after the transaction
commits, prior to the commit, latent transactional loads and stores
might be pending. These latent loads and stores, executed by trans-
actions that accessed the segment before it was isolated, can still
read from and write into the shared memory segment that was in-
tended to be isolated. This unexpected behavior is known as the
“privatization problem.” This results in unexpected changes to the
contents of the isolated shared memory (which may have been real-
located and (although resident in the shared memory)) is intended
to be outside of the transactionally shared data region. Other unex-
pected, generally asynchronous, behaviors can also occur.

Figure 3 shows an example of such a scenario. In modern STM
algorithms such as TinySTM and TL2, in order to be efficient,
read only transactions are invisible, that is, they do not write (let
along hold lock) to memory locations they read, which prevents a
concurrent writer from knowing they might be reading the location.
Consider a write transaction by a thread P that removes a node
from a linked list. Once the transaction completes, the node will no
longer be reachable to other threads and P will be able to operate on
it privately. However, before P completes its transaction, another
transaction Q reads the pointer, and is poised to read a value from
the node. P has no way of detecting Q. This is because Q reads
the pointer invisibly, and will not see any trace of P touching the
location in the node since P is operating on it non-transactionally.
As a result, even though Q is doomed to fail (once it revalidates
the locations it read, and detects the pointer has changed), in the
interim it can perform illegal operations. This is an example of a
privatization problem that one must overcome.

In general, in order to privatize some shared memory range, two
steps must be taken:

1. Disable access by new transactions to this range.

2. Wait for transactions already accessing the range to complete.

In the example in Figure 3, in order to provide privatization
as described in the two steps, a transaction needs to remove the
node from the list and then wait for other transactions which might
concurrently read the node to finish. After both steps are done the
node is privatized - there are no transactions currently accessing it.

For lack of space we do not prove the new STM provides
privatization. Informally, the first step of removing the node from
the list is the programmer’s responsibility. The more problematic
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Figure 3. Privatization Pathology Example.

is the second one. The fully pessimistic STM achieves the second
one without any changes because the write transaction’s commit-
phase performs the second step within its quiescence step. The
quiescence step waits for currently executing read transactions to
finish. Because this step is executed after the write-locations are
blocked for new transactions, and because and it waits for the
currently executing ones to finish - it accomplishes the both of the
required steps towards privatization in a straightforward way.

2.3 Transactions and Fibering
The algorithm executes the write transactions one after another.
This can lead to a large scalability penalty when there are many
writers executing at the same time. A possible solution for this
is a context-switch. Kernel context switches are relatively expen-
sive operations that cannot be executed frequently. Therefore, we
propose to implement userspace switching using fibers (or corou-
tines). There are existing packages [8] which implement userspace
switching. Our implementation does not use any existing packages,
it only simulates the userspace switching in the most simple way by
a thread function call when the switch is required. We believe this
is enough to show the performance benefits if fibering were to be
applied.

To explain the implementation we start with an example. Sup-
pose we have a some physical thread and userspace A and B. The
physical thread starts to execute thread A and now encounters a
writer transaction that is forced to wait for a writer token. Instead
of waiting, thread A performs a userspace context switch to thread
B. In thread B, after every read transaction, a check is performed
to see if the writer token has been received. When received, exe-
cution is returned to thread A and the pending write transaction is
executed. Otherwise, thread B continues its execution until it en-
counters a write transaction which is also forced to wait. In this
case, there is no further possibility to switch (because we have only
A and B) and thread B waits for the write token. When it arrives,
thread B’s write transaction is executed. Then execution is return to
thread A, the pending writer is executed, and thread A continues its
execution normally.

In our implementation, a userspace thread is identified by a
start function. Groups of userspace threads are assigned to phys-
ical threads. Physical thread starts by executing the first userspace
thread from his group. If a wait for a writer token is encountered,
an internal switch to the second userspace thread in the group is
performed by calling the second thread’s start function. The sec-
ond thread will check if the writer token is received for the physi-
cal thread after every read transaction and if received, the execution
will return back to the calling thread’s function. Upon a write trans-
action if a wait for the writer token is required, an internal switch to
the third userspace thread in the group is performed by calling third
thread’s function. The wait for the write token will be performed in
a spin-loop when the pool of the userspace threads for this physical

thread is finished. In this way, the userspace threads in the group
are called recursively, on a wait condition, until the condition is
satisfied, and then ”collapse” the execution backwards.

The use of fibering provides our implementation with two ben-
efits:

1. Reduced writer contention: Because the userspace switch is
done at the contention point, when waiting for the writer token
is required, a chance is given to some other thread to execute
code which is not a write transaction. This saves the idle cycles
to allow other work to go on in the system.

2. Bounds the activity array length: If we have N userspace
threads, and M hardware threads, then we can assign a group
of N/M userspace threads to every hardware thread. This means
that one needs only M activity array entries to implement the
required quiescence mechanism.

As we will show in the next section, the combination of fibers
and pessimistic transactions enhances performance.

3. Empirical Performance Evaluation
We empirically evaluated our algorithm on an Oracle SPARC Nia-
gara 2 based 128-way machine and an Intel Core i7 8-way machine.

The algorithms we benchmarked are:

TL2 The transactional locking algorithm of [6]. This algorithm
is representative of a class of high performance lock-based
algorithms such as [9, 17, 21].

PTM Our new fully pessimistic STM. We use the initials PTM in
the graphs, though this is not its “name.”

FiberedPTM The same algorithm as PTM but with fibering im-
plemented and applied after peek performance is reached. The
threads are divided to groups of two. When some thread’s write
transaction is required to wait for a signal, a user space context
switch is performed to pass execution to the next thread in the
thread’s group.

The fully pessimistic algorithm design allows read transactions
to be executed concurrently with write transactions. But because
only one write transaction is allowed be executed at any time,
we lose the benefit of writer transactions concurrency which op-
timistic STMs have. On the other hand, the new write transactions
are more efficient and never abort. In addition, there can be an un-
limited number of concurrent read-only transactions. We have thus
designed two benchmarks that will allow us to evaluate the effects
of these parameters: a red-black tree implementation and a collec-
tion of STAMP micro-benchmarks. We will use the the standard
STAMP benchmarks to gauge the possible effect of the seriality of
the writes and the overhead of our synchronization mechanism if
they were to be executed in real applications. We will use the red-
black tree to perform instrumentations that we can vary artificially
in order to understand how various parameters (such as the gap be-
tween one transaction execution and the next) affect performance.

3.1 The Red Black Tree Benchmark
The red-black tree implementation exposes a key-value pair inter-
face of put, delete, and get operations. The put operation installs
a key-value pair, if the key is present, else updates the key’s node
value. Delete removes the key’s node, if present, and get returns the
value associated with a key. We allow the tree to grow to maximum
200K elements while initially making it 100K elements. The ex-
ecution is done with 10% puts and 10% deletes when we vary the
length of the private work which is done after the writer transaction.
N private work means threads execute N opcodes of dummy mem-
ory fence to simulate the private gaps between the transactions.
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Figure 6. The top graphs show STAMP benchmark results on Oracle and the bottom graphs show the results on Intel.

Figure 4 presents the results for different gaps, that is, amounts
of “private work” executed after the write transactions. For the
Oracle machine, when the amount of private work is 0, which is
the case when transactions are executed one after another without
any gaps - PTM scales only up to 4 threads. This result is not
surprising because this is the case when the serial bottleneck of
the write transactions dominates the performance. In the case of
1000 opcodes of private work, the PTM scales up to 48 threads and
then drops in the performance. By applying the fibering after 48,
threads the performance drop is avoided and is constant after this
point. For the 2000 opcode private work case, the PTM scales up

to 64 threads. By applying fibering after 64 threads, the algorithm
scales up to 80 threads and then sustains the performance. On Intel,
when executing for 0 private work, PTM scales till 4 threads and
then drops. This is similar to the Oracle case. Executing for 100
opcodes of private work gives the same performance and slightly
better than of TL2. Interestingly, 100 opcodes of private work are
required to achieve the same performance in the Intel case.

The results for the RB-Tree benchmark are good on Oracle and
Intel CPUs when private work is introduced after the write trans-
action. This private work’s effect is to reduce write transaction fre-
quency, the main problem for the fully pessimistic STM perfor-
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mance. To analyze this more deeply we measured the write trans-
action contention for RB-Tree benchmarks. The writers contention
is defined by the average number of write transactions waiting in
the activity array when a the currently executing write transaction
must choose the next writer by scanning this array. In figure 5, write
transaction contention results are presented for both Oracle and In-
tel CPU for the benchmarks of figure 4. PTM-PrvWork0, PTM-
PrvWork1000 and PTM-PrvWork2000 are the writers contention
results for 0, 1000 and 2000 opcodes of private work on Oracle.
When the writers contention gets closer to the number 10 (10 write
transactions waiting on average) the PTM starts to lose to TL2.
This indicates that the fully pessimistic STM can sustain up to 10
write transactions which are serialized and still be better than the
optimistic STM. For Intel, PTM-PrvWork0 and PTM-PrvWork100
are the contention results for 0 and 100 opcodes of private work. In
this case, when the contention level 0.5 is reached, the PTM loses
to TL2. An 0.5 level is much less than the Oracle result which is
10. The reason for this is that Intel is significantly more pipelined
and optimized for single-thread performance than Oracle.

The RB-Tree results analysis show that the PTM performance
depends on (1) write transactions contention, and (2) write trans-
action single-thread performance. By improving the single-thread
performance at the peek performance point (when there is no more
scaling) we can extend the performance to a higher number of
threads. On Oracle the PTM write transaction is much more ef-
ficient than on Intel. In contrast, on Oracle the contention is much
higher with a 128-way machine relative to the Intel 8-way machine.
Still the total combination of the writers contention with a single-
thread performance a writer give us good results on both processors
when the private work between transactions is sufficiently large.

Finally, as we see in Figure 4, fibering can be used to preserve
or improve the performance for increasing number of threads. This
is a result of better CPU utilization, when hardware threads are
executing write transactions that are waiting for one another.

3.2 STAMP Benchmarks
The STAMP benchmarks [5] model realistic programs. We imple-
mented the fully pessimistic STM into STAMP and tested it rel-
ative to the TL2 optimistic STM. The fully pessimistic model re-
quires from the user to indicate which transaction is a read-only. In
STAMP there is no such indication. Therefore we analyzed every
benchmark for read transactions and added the read-only indication
in appropriate transactions. The benchmarks we implemented are:
genome, intruder, vacation, kmeans, labyrinth and ssca2.

In figure 6, the STAMP results are shown for Oracle and In-
tel machines. Genome, Intruder and Vacation show that the fully
pessimistic STM performs well when there is some combination
of read and write transactions. It performs well even for a very
high number of cpu which may be surprising. They have some
private work between the transactions. In the Intruder case, PTM
wins by almost a factor of two. That’s because the write transac-
tion of PTM is faster than that of TL2 because unlike TL2, it never
aborts (while TL2 suffers from a high abort rate) and it commits
using only writes and no CAS operations. On Intel, the same three
benchmarks have similar behavior except Intruder. PTM loses to
TL2 beyond 4 threads. This is because on Intel, the contention is
much lower so the aborts have a lesser affect and the Intel cpu is
able more optimized and pipelined so the effects of the simpler
transaction code are limited.

Kmeans is a benchmark which has 100% write transactions.
Still, we can see that PTM performs pretty well on both Oracle and
Intel. The reason PTM performs well despite its serialized write
transaction sequences, is that there are big gaps of private between
transactions. In contrast, in Labyrinth and SSCA2, benchmarks
which have also a 100% write transactions, PTM performs poorly

on both Oracle and Intel. PTM loses on both because the write
transactions do not have a long enough private gaps between them
to may the serial execution of the write transactions.

In summary, our results indicate that the main reasons for the
good performance of the fully pessimistic STM are

• Infrequent writers: The chance of having many write transac-
tions executing is low in most STAMP benchmarks. Is this true
of large scale real-world applications? We do not know but it
would be interesting to program one using our new STM and
find out, and

• Efficient pessimistic writers: The pessimistic write transac-
tion is more efficient than the optimistic one. No read-set main-
tenance and revalidation is required at any point. In addition,
the commit-phase does not include any CAS operations: only
simple assignments.
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